A new solution to the plasma starved event horizon magnetosphere

Very Long Baseline Interferometry observations at 86 GHz reveal an almost hollow jet in M87 with a forked morphology. The detailed analysis presented here indicates that the spectral luminosity of the central spine of the jet in M87 is a few percent of that of the surrounding hollow jet 200–400 μ as from the central black hole. Furthermore, recent jet models indicate that a hollow “tubular” jet can explain a wide range of plausible broadband spectra originating from jetted plasma located within ~30 μ as of the central black hole, including the 230 GHz correlated flux detected by the Event Horizon Telescope. Most importantly, these hollow jets from the inner accretion flow have an intrinsic power capable of energizing the global jet out to kiloparsec scales. Thus motivated, this paper considers new models of the event horizon magnetosphere (EHM) in low luminosity accretion systems. Contrary to some models, the spine is not an invisible powerful jet. It is an intrinsically weak jet. In the new EHM solution, the accreted poloidal magnetic flux is weak and the background photon field is weak. It is shown how this accretion scenario naturally results in the dissipation of the accreted poloidal magnetic flux in the EHM not the accumulation of poloidal flux required for a powerful jet. The new solution indicates less large scale poloidal magnetic flux (and jet power) in the EHM than in the surrounding accretion flow and cannot support significant EHM driven jets.

[1]  A Jet Source of Event Horizon Telescope Correlated Flux in M87 , 2017, 1710.08355.

[2]  J. Algaba,et al.  Pilot KaVA monitoring on the M87 jet: confirming the inner jet structure and superluminal motions at sub-pc scales , 2017, 1706.02066.

[3]  I. Moortel,et al.  The effects of resistivity and viscosity on the Kelvin- Helmholtz instability in oscillating coronal loops , 2017, 1703.02423.

[4]  K. Hada The Structure and Propagation of the Misaligned Jet M87 , 2016 .

[5]  J. -. Kim,et al.  Resolving the Base of the Relativistic Jet in M87 at 6Rsch Resolution with Global mm-VLBI , 2016, 1609.07896.

[6]  R. Walker,et al.  Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii , 2016, 1608.05063.

[7]  E. Ros,et al.  MOJAVE. XIII. PARSEC-SCALE AGN JET KINEMATICS ANALYSIS BASED ON 19 YEARS OF VLBA OBSERVATIONS AT 15 GHz , 2016, 1603.03882.

[8]  Sudip Garain,et al.  Riemann solvers and Alfven waves in black hole magnetospheres , 2016, Computational astrophysics and cosmology.

[9]  J. A. Fern'andez-Ontiveros,et al.  The central parsecs of M87: jet emission and an elusive accretion disc , 2015, 1508.02302.

[10]  Sophie Keller,et al.  Black Holes The Membrane Paradigm , 2016 .

[11]  S. Ida,et al.  EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION , 2015, 1512.08182.

[12]  H. Pu,et al.  ENERGETIC GAMMA RADIATION FROM RAPIDLY ROTATING BLACK HOLES , 2015, 1512.05026.

[13]  M. Kino,et al.  HIGH-SENSITIVITY 86 GHz (3.5 mm) VLBI OBSERVATIONS OF M87: DEEP IMAGING OF THE JET BASE AT A RESOLUTION OF 10 SCHWARZSCHILD RADII , 2015, 1512.03783.

[14]  R. Blandford,et al.  Active Galactic Nuclei: The TeV Challenge , 2015, 1511.07515.

[15]  H. Falcke,et al.  GRMHD simulations of the jet in M87 , 2015 .

[16]  A. Neronov,et al.  Particle acceleration in the vacuum gaps in black hole magnetospheres , 2015, 1510.04023.

[17]  A. Tchekhovskoy,et al.  HORIZON-SCALE LEPTON ACCELERATION IN JETS: EXPLAINING THE COMPACT RADIO EMISSION IN M87 , 2015, 1506.04754.

[18]  B. Punsly EVIDENCE OF THE DYNAMICS OF RELATIVISTIC JET LAUNCHING IN QUASARS , 2015, 1504.00228.

[19]  M. Kino,et al.  MAGNETIZATION DEGREE AT THE JET BASE OF M87 DERIVED FROM THE EVENT HORIZON TELESCOPE DATA: TESTING THE MAGNETICALLY DRIVEN JET PARADIGM , 2015, 1502.03900.

[20]  N. Kylafis,et al.  The Formation and Disruption of Black Hole Jets , 2015 .

[21]  B. Punsly Black Hole Magnetospheres , 2015 .

[22]  M. Kino,et al.  RELATIVISTIC ELECTRONS AND MAGNETIC FIELDS OF THE M87 JET ON THE ∼10 SCHWARZSCHILD RADII SCALE , 2014, 1403.0650.

[23]  J. Stephen,et al.  THE INTEGRAL HIGH-ENERGY CUT-OFF DISTRIBUTION OF TYPE 1 ACTIVE GALACTIC NUCLEI , 2014, 1401.3647.

[24]  H. Fichtner,et al.  The return of the bow shock , 2013, 1312.1197.

[25]  V. S. Beskin,et al.  On the structure of the magnetic field near a black hole in active galactic nuclei , 2013, 1303.1644.

[26]  N. P. Lee,et al.  The kinematic of HST-1 in the jet of M 87 , 2012, 1202.0013.

[27]  Stanford,et al.  Prograde and retrograde black holes: whose jet is more powerful? , 2012, 1201.4385.

[28]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[29]  Eric Agol,et al.  The size of the jet launching region in M87 , 2011, 1109.6011.

[30]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[31]  Frank Rieger,et al.  VARIABLE TeV EMISSION AS A MANIFESTATION OF JET FORMATION IN M87? , 2010, 1011.5319.

[32]  A. Sa̧dowski,et al.  Relativistic slim disks with vertical structure , 2010, 1006.4309.

[33]  P. Nulsen,et al.  ARE RADIO ACTIVE GALACTIC NUCLEI POWERED BY ACCRETION OR BLACK HOLE SPIN? , 2010, 1007.1227.

[34]  A. Wilmot-Smith,et al.  Dynamics of braided coronal loops I. Onset of magnetic reconnection , 2010, 1001.1717.

[35]  I. Igumenshchev,et al.  THREE-DIMENSIONAL SIMULATIONS OF VERTICAL MAGNETIC FLUX IN THE IMMEDIATE VICINITY OF BLACK HOLES , 2009, 0908.3697.

[36]  J. Krolik,et al.  TRANSPORT OF LARGE-SCALE POLOIDAL FLUX IN BLACK HOLE ACCRETION , 2009, 0906.2784.

[37]  R. Antonucci,et al.  THE SPITZER VIEW OF FR I RADIO GALAXIES: ON THE ORIGIN OF THE NUCLEAR MID-INFRARED CONTINUUM , 2009, 0906.2152.

[38]  D. Evans,et al.  The active nuclei of z < 1.0 3CRR radio sources , 2009, 0904.1323.

[39]  I. Igumenshchev Magnetically Arrested Disks and Origin of Poynting Jets: Numerical Study , 2007, 0711.4391.

[40]  Jorge Pullin,et al.  Late-time tails in the Kerr spacetime , 2007, 0710.4183.

[41]  B. Punsly Dynamic boundaries of event horizon magnetospheres , 2007, 0707.3109.

[42]  F. Aharonian,et al.  Dynamics and high-energy emission of the flaring HST-1 knot in the M 87 jet , 2006, astro-ph/0602220.

[43]  J. Krolik,et al.  Magnetically Driven Jets in the Kerr Metric , 2005, astro-ph/0512227.

[44]  J. Krolik,et al.  Magnetically Driven Accretion Flows in the Kerr Metric. IV. Dynamical Properties of the Inner Disk , 2004, astro-ph/0409231.

[45]  B. Punsly,et al.  Simulations of Jets Driven by Black Hole Rotation , 2004, Science.

[46]  B. Punsly Fast-Wave Polarization, Charge Horizons, and the Time Evolution of Force-free Magnetospheres , 2004, astro-ph/0407357.

[47]  C. Gammie,et al.  A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole , 2004, astro-ph/0404512.

[48]  S. S. Komissarov,et al.  Electrodynamics of black hole magnetospheres , 2004, astro-ph/0402403.

[49]  R. Antonucci,et al.  Thermal Emission as a Test for Hidden Nuclei in Nearby Radio Galaxies , 2002, astro-ph/0207385.

[50]  J. Krolik,et al.  Magnetically Driven Accretion Flows in the Kerr Metric. I. Models and Overall Structure , 2003, astro-ph/0307260.

[51]  W. Sparks,et al.  Flaring X-Ray Emission from HST-1, a Knot in the M87 Jet , 2003, astro-ph/0302270.

[52]  Bing Zhang,et al.  Regimes of Pulsar Pair Formation and Particle Energetics , 2002, astro-ph/0205077.

[53]  M. Allen,et al.  The Nuclei of Radio Galaxies in the Ultraviolet: The Signature of Different Emission Processes , 2002, astro-ph/0202035.

[54]  D. Meier,et al.  Extraction of Black Hole Rotational Energy by a Magnetic Field and the Formation of Relativistic Jets , 2002, Science.

[55]  A. Wilson,et al.  Submitted to the Astrophysical Journal Chandra X-ray Imaging and Spectroscopy of the M87 Jet and Nucleus , 2002 .

[56]  B. Punsly,et al.  Black hole gravitohydromagnetics , 2001 .

[57]  Levinson,et al.  Particle acceleration and curvature TeV emission by rotating, supermassive black holes , 2000, Physical review letters.

[58]  N. E. Kassim,et al.  M87 at 90 Centimeters: A Different Picture , 2000, astro-ph/0006150.

[59]  M. Hardcastle,et al.  Radio, optical and X-ray nuclei in nearby 3CRR radio galaxies , 1999, astro-ph/9912477.

[60]  Hod Radiative tail of realistic rotating gravitational collapse , 1999, Physical review letters.

[61]  S. Shibata Pulsar Electrodynamics , 1999, astro-ph/9912514.

[62]  K. Blundell,et al.  The emission line—radio correlation for radio sources using the 7C Redshift Survey , 1999, astro-ph/9905388.

[63]  B. Punsly High-Energy Gamma-Ray Emission from Galactic Kerr-Newman Black Holes. I. The Central Engine , 1998 .

[64]  I. Okamoto,et al.  Pair Plasma Production in a Force-free Magnetosphere around a Supermassive Black Hole , 1998 .

[65]  M. Henriksen The Deutsch field gamma-ray pulsar — I. The model basics , 1996, astro-ph/9601157.

[66]  Kaiyou Chen,et al.  Pulsar death lines and death valley , 1993 .

[67]  T. Chiueh,et al.  Electromagnetically Driven Relativistic Jets: A Class of Self-similar Solutions , 1992 .

[68]  Coroniti,et al.  Electrodynamics of the event horizon. , 1989, Physical review. D, Particles and fields.

[69]  C. Ho,et al.  Energetic Radiation from Rapidly Spinning Pulsars. 1. Outer Magnetosphere Gaps. 2. Vela and Crab , 1986 .

[70]  R. Blandford,et al.  Semidynamical models of radio jets: relativistic beaming and source counts. , 1985 .

[71]  C. Kennel,et al.  Confinement of the Crab pulsar's wind by its supernova remnant , 1984 .

[72]  J. Bičák,et al.  Stationary electromagnetic fields around black holes. III. General solutions and the fields of current loops near the Reissner-Nordstroem black hole , 1980 .

[73]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[74]  J. Bičák,et al.  Stationary electromagnetic fields around black holes. II. General solutions and the fields of some special sources near a Kerr black hole , 1976 .

[75]  C. V. Vishveshwara,et al.  Electromagnetic field of a current loop around a Kerr black hole , 1975 .

[76]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[77]  P. Sturrock A Model of Pulsars , 1970 .