Characterization of the hyperbolicity in the lexicographic product

Abstract If X is a geodesic metric space and x 1 , x 2 , x 3 ∈ X , a geodesic triangle T = { x 1 , x 2 , x 3 } is the union of the three geodesics [ x 1 x 2 ] , [ x 2 x 3 ] and [ x 3 x 1 ] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ ( X ) the sharp hyperbolicity constant of X, i.e. δ ( X ) = inf ⁡ { δ ≥ 0 : X is δ -hyperbolic } . In this paper we characterize the lexicographic product of two graphs G 1 ∘ G 2 which are hyperbolic, in terms of G 1 and G 2 : the lexicographic product graph G 1 ∘ G 2 is hyperbolic if and only if G 1 is hyperbolic, unless if G 1 is a trivial graph (the graph with a single vertex); if G 1 is trivial, then G 1 ∘ G 2 is hyperbolic if and only if G 2 is hyperbolic. In particular, we obtain that δ ( G 1 ) ≤ δ ( G 1 ∘ G 2 ) ≤ δ ( G 1 ) + 3 / 2 if G 1 is not a trivial graph, and we find families of graphs for which the inequalities are attained.

[1]  Y. Cho,et al.  Discrete Groups , 1994 .

[2]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[3]  José M. Rodríguez,et al.  Hyperbolicity in the corona and join of graphs , 2014, 1410.2938.

[4]  David Eppstein,et al.  Squarepants in a tree: sum of subtree clustering and hyperbolic pants decomposition , 2006, SODA '07.

[5]  Yuval Shavitt,et al.  On the curvature of the Internet and its usage for overlay construction and distance estimation , 2004, IEEE INFOCOM 2004.

[6]  Victor Chepoi,et al.  Packing and Covering delta -Hyperbolic Spaces by Balls , 2007, APPROX-RANDOM.

[7]  Edy Tri Baskoro,et al.  The metric dimension of the lexicographic product of graphs , 2013, Discret. Math..

[8]  José M. Rodríguez,et al.  Gromov Hyperbolicity in Strong Product Graphs , 2013, Electron. J. Comb..

[9]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[10]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[11]  José M. Rodríguez,et al.  Gromov hyperbolicity in Cartesian product graphs , 2010 .

[12]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Shing-Tung Yau,et al.  Graph homotopy and Graham homotopy , 2001, Discret. Math..

[14]  J. Rodríguez Characterization of Gromov hyperbolic short graphs , 2014 .

[15]  V. Chepoi,et al.  Packing and covering δ-hyperbolic spaces by balls ? , 2007 .

[16]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[17]  H. Short,et al.  Notes on word hyperbolic groups , 1991 .

[18]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[19]  E. Jonckheere Contrôle du trafic sur les réseaux à géométrie hyperbolique : Vers une théorie géométrique de la sécurité de l'acheminement de l'information , 2003 .