Deep learning models will shape the future of stem cell research

[1]  Guoji Guo,et al.  Deep learning of cross-species single-cell landscapes identifies conserved regulatory programs underlying cell types , 2022, Nature Genetics.

[2]  P. Bankhead,et al.  BioImage Model Zoo: A Community-Driven Resource for Accessible Deep Learning in BioImage Analysis , 2022, bioRxiv.

[3]  Michael I. Jordan,et al.  DestVI identifies continuums of cell types in spatial transcriptomics data , 2022, Nature Biotechnology.

[4]  Fabian J Theis,et al.  Biologically informed deep learning to infer gene program activity in single cells , 2022, bioRxiv.

[5]  Chun Jimmie Ye,et al.  CRISPR activation and interference screens decode stimulation responses in primary human T cells , 2022, Science.

[6]  Anat Kreimer,et al.  Massively parallel reporter perturbation assays uncover temporal regulatory architecture during neural differentiation , 2021, Nature Communications.

[7]  Shuhei A Horiguchi,et al.  Robotic search for optimal cell culture in regenerative medicine , 2020, bioRxiv.

[8]  Fabian J Theis,et al.  Mapping single-cell data to reference atlases by transfer learning , 2021, Nature Biotechnology.

[9]  Andrew R. Cohen,et al.  Deep learning-enhanced morphological profiling predicts cell fate dynamics in real-time in hPSCs , 2021, bioRxiv.

[10]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[11]  Jianzhu Ma,et al.  Modeling gene regulatory networks using neural network architectures , 2021, Nature Computational Science.

[12]  Sachit D. Saksena,et al.  Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions , 2021, Nature Communications.

[13]  Fabian J Theis,et al.  Learning interpretable cellular responses to complex perturbations in high-throughput screens , 2021, bioRxiv.

[14]  T. Mikkelsen,et al.  Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. , 2021, Cell stem cell.

[15]  Liming Cheng,et al.  Deep learning-based predictive identification of neural stem cell differentiation , 2021, Nature Communications.

[16]  M. Zernicka-Goetz,et al.  Machine learning-assisted high-content analysis of pluripotent stem cell-derived embryos in vitro , 2021, Stem cell reports.

[17]  Jay W. Shin,et al.  Decoding Neuronal Diversification by Multiplexed Single-cell RNA-Seq , 2021, Stem cell reports.

[18]  Aaron M. Streets,et al.  Joint probabilistic modeling of single-cell multi-omic data with totalVI , 2021, Nature Methods.

[19]  Michael I. Jordan,et al.  Probabilistic harmonization and annotation of single‐cell transcriptomics data with deep generative models , 2021, Molecular systems biology.

[20]  Norio Kobayashi,et al.  FANTOM enters 20th year: expansion of transcriptomic atlases and functional annotation of non-coding RNAs , 2020, Nucleic Acids Res..

[21]  Fabian J Theis,et al.  Conditional out-of-distribution generation for unpaired data using transfer VAE. , 2020, Bioinformatics.

[22]  John F. Ouyang,et al.  EpiMogrify Models H3K4me3 Data to Identify Signaling Molecules that Improve Cell Fate Control and Maintenance. , 2020, Cell systems.

[23]  John F. Ouyang,et al.  Reprogramming roadmap reveals route to human induced trophoblast stem cells , 2020, Nature.

[24]  Martin S. Taylor,et al.  Comparative transcriptomics of primary cells in vertebrates , 2020, Genome research.

[25]  Guy Cochrane,et al.  The European Nucleotide Archive in 2019 , 2019, Nucleic Acids Res..

[26]  B. Ballester,et al.  ReMap 2020: a database of regulatory regions from an integrative analysis of Human and Arabidopsis DNA-binding sequencing experiments , 2019, Nucleic Acids Res..

[27]  Sean K. Simmons,et al.  In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes , 2019, Science.

[28]  Xuehai Hu,et al.  A Pretraining-Retraining Strategy of Deep Learning Improves Cell-Specific Enhancer Predictions , 2020, Frontiers in Genetics.

[29]  Ronald R. Coifman,et al.  Visualizing structure and transitions in high-dimensional biological data , 2019, Nature Biotechnology.

[30]  Calin Belta,et al.  Automated Design of Pluripotent Stem Cell Self-Organization. , 2019, Cell systems.

[31]  Mohammad Lotfollahi,et al.  scGen predicts single-cell perturbation responses , 2019, Nature Methods.

[32]  Samuel L. Wolock,et al.  A comprehensive single cell transcriptional landscape of human hematopoietic progenitors , 2019, Nature Communications.

[33]  Fabian J. Theis,et al.  Deep learning does not outperform classical machine learning for cell-type annotation , 2019, bioRxiv.

[34]  Jun Cheng,et al.  The Kipoi repository accelerates community exchange and reuse of predictive models for genomics , 2019, Nature Biotechnology.

[35]  R. Durbin,et al.  Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors , 2019, Cell reports.

[36]  Michael I. Jordan,et al.  Probabilistic harmonization and annotation of single‐cell transcriptomics data with deep generative models , 2019, bioRxiv.

[37]  Patrick S. Stumpf,et al.  Machine Learning of Stem Cell Identities From Single-Cell Expression Data via Regulatory Network Archetypes , 2019, Front. Genet..

[38]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[39]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[40]  Shinsuke Yuasa,et al.  Automated Deep Learning-Based System to Identify Endothelial Cells Derived from Induced Pluripotent Stem Cells , 2018, Stem cell reports.

[41]  Deepak Kumar Jha,et al.  Reconstruction of complex single-cell trajectories using CellRouter , 2018, Nature Communications.

[42]  Kathleen M Jagodnik,et al.  Massive mining of publicly available RNA-seq data from human and mouse , 2017, Nature Communications.

[43]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[44]  Jeffrey T Leek,et al.  Reproducible RNA-seq analysis using recount2 , 2017, Nature Biotechnology.

[45]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[46]  A. Sandelin,et al.  Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance , 2014, Nature Genetics.

[47]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[48]  G. Cochrane,et al.  The International Nucleotide Sequence Database Collaboration , 2011, Nucleic Acids Res..

[49]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..