A fractional stochastic evolution equation driven by fractional Brownian motion

This paper introduces a semilinear stochastic evolution equation which contains fractional powers of the infinitesimal generator of a strongly continuous semigroup and is driven by Hilbert space-valued fractional Brownian motion. Fractional powers of the generator induce long-range dependence in space, while fractional Brownian motion induces long-range dependence in time in the solution of the equation. An approximation of the evolution solution is then constructed by the splitting method. The existence and uniqueness of the solution and mean-square convergence of the approximation algorithm are established.

[1]  R. Manthey On the Cauchy Problem for Reaction‐Diffusion Equations with White Noise , 1988 .

[2]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[3]  Jerzy Zabczyk,et al.  Stochastic Equations in Infinite Dimensions: Martingale solutions , 1992 .

[4]  R. Hilfer FRACTIONAL TIME EVOLUTION , 2000 .

[5]  N. Leonenko,et al.  Parameter identification for singular random fields arising in Burgers’ turbulence , 1999 .

[6]  José M. Angulo,et al.  Possible long-range dependence in fractional random fields , 1999 .

[7]  P. Kloeden,et al.  EXISTENCE AND UNIQUENESS THEOREMS FOR FBM STOCHASTIC DIFFERENTIAL EQUATIONS , 1998 .

[8]  V. Anh,et al.  A parabolic stochastic differential equation with fractional Brownian motion input , 1999 .

[9]  V. Anh,et al.  Approximation of stochastic evolution equations and application to equations with fractional power of infinitesimal operators , 2000 .

[10]  A. Compte,et al.  The generalized Cattaneo equation for the description of anomalous transport processes , 1997 .

[11]  K. Takano One-parameter Semigroups with Infinitesimal Generators of Fractional Powers of the Laplacean on Weighted Lp-spaces , 1981 .

[12]  W. Donoghue Distributions and Fourier transforms , 1969 .

[13]  S. Griffis EDITOR , 1997, Journal of Navigation.

[14]  W. Grecksch Stochastic evolution equations , 1995 .

[15]  A. V. Balakrishnan,et al.  Fractional powers of closed operators and the semigroups generated by them. , 1960 .

[16]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[17]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[18]  Jerzy Zabczyk,et al.  Stochastic Equations in Infinite Dimensions: Foundations , 1992 .

[19]  N. Leonenko,et al.  Spectral Analysis of Fractional Kinetic Equations with Random Data , 2001 .

[20]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[21]  N. U. Ahmed,et al.  Semigroup Theory With Applications to Systems and Control , 1991 .

[22]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[23]  N. Leonenko,et al.  Limit Theorems for Random Fields with Singular Spectrum , 1999 .