A New Algorithm for Identification of Significant Operating Points Using Swarm Intelligence

The paper presents a novel algorithm for identification of significant operating points from non-invasive identification of nonlinear dynamic objects. In the proposed algorithm to identify the unknown parameters of nonlinear dynamic objects in different significant operating points, swarm intelligence supported by a genetic algorithm is used for optimization in continuous domain. Moreover, we propose a new weighted approximation error measure which eliminates the problem of the measurements obtained from non-significant areas. This measure significantly accelerates the process of the parameters identification in comparison with the same algorithm without weights. Performed simulations prove efficiency of the novel algorithm.

[1]  L. Rutkowski,et al.  Flexible Takagi-Sugeno fuzzy systems , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[2]  Leszek Rutkowski,et al.  Flexible Takagi Sugeno Neuro Fuzzy Structures for Nonlinear Approximation , 2005 .

[3]  Jaroslaw Bilski,et al.  Parallel Realisation of the Recurrent Multi Layer Perceptron Learning , 2012, ICAISC.

[4]  Lazaros S. Iliadis,et al.  Artificial Neural Networks - ICANN 2010 - 20th International Conference, Thessaloniki, Greece, September 15-18, 2010, Proceedings, Part I , 2010, International Conference on Artificial Neural Networks.

[5]  Robert Ivor John,et al.  Type-reduction of the discretised interval type-2 fuzzy set: What happens as discretisation becomes finer? , 2011, 2011 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ).

[6]  Jaroslaw Bilski,et al.  Parallel Approach to Learning of the Recurrent Jordan Neural Network , 2013, ICAISC.

[7]  Wu Bin,et al.  CSIM: a document clustering algorithm based on swarm intelligence , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[8]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[9]  Krystian Lapa,et al.  New Algorithm for Evolutionary Selection of the Dynamic Signature Global Features , 2013, ICAISC.

[10]  Meng Joo Er,et al.  Online Speed Profile Generation for Industrial Machine Tool Based on Neuro-fuzzy Approach , 2010, ICAISC.

[11]  Krzysztof Patan,et al.  Optimal training strategies for locally recurrent neural networks , 2011 .

[12]  Krystian Lapa,et al.  A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects , 2014, Neurocomputing.

[13]  Jaroslaw Bilski,et al.  Parallel Realisation of the Recurrent RTRN Neural Network Learning , 2008, ICAISC.

[14]  Marcin Zalasinski,et al.  New Approach for the On-Line Signature Verification Based on Method of Horizontal Partitioning , 2013, ICAISC.

[15]  Marcin Gabryel,et al.  Object Detection by Simple Fuzzy Classifiers Generated by Boosting , 2013, ICAISC.

[16]  Ryszard Tadeusiewicz,et al.  Artificial Intelligence and Soft Computing - ICAISC 2006, 8th International Conference, Zakopane, Poland, June 25-29, 2006, Proceedings , 2006, International Conference on Artificial Intelligence and Soft Computing.

[17]  Donald E. Grierson,et al.  Comparison among five evolutionary-based optimization algorithms , 2005, Adv. Eng. Informatics.

[18]  Lukasz Laskowski A Novel Continuous Dual Mode Neural Network in Stereo-Matching Process , 2010, ICANN.

[19]  Marcin Gabryel,et al.  Creating Learning Sets for Control Systems Using an Evolutionary Method , 2012, ICAISC.

[20]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[21]  Janusz T. Starczewski,et al.  Fully Controllable Ant Colony System for Text Data Clustering , 2012, ICAISC.

[22]  Romis de Faissol Attux,et al.  Magnetic particle swarm optimization , 2011, 2011 IEEE Symposium on Swarm Intelligence.

[23]  Janusz T. Starczewski,et al.  A New Method for Dealing with Unbalanced Linguistic Term Set , 2012, ICAISC.

[24]  Marcin Zalasinski,et al.  Novel Algorithm for the On-Line Signature Verification , 2012, ICAISC.

[25]  Janusz T. Starczewski,et al.  New Linguistic Hedges in Construction of Interval Type-2 FLS , 2010, ICAISC.

[26]  A. Kroll On choosing the fuzziness parameter for identifying TS models with multidimensional membership functions , 2011 .

[27]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[28]  Piotr Dziwiñski,et al.  Algorithm for Generating Fuzzy Rules for WWW Document Classification , 2006, ICAISC.

[29]  F. S. Lobato,et al.  A new multi-objective optimization algorithm based on differential evolution and neighborhood exploring evolution strategy , 2011 .

[30]  Krzysztof Cpałka,et al.  A new method of on-line signature verification using a flexible fuzzy one-class classifier , 2011 .

[31]  Leszek Rutkowski,et al.  A New Method for Designing and Reduction of Neuro-Fuzzy Systems , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[32]  Jörg H. Siekmann,et al.  Artificial Intelligence and Soft Computing - ICAISC 2004 , 2004, Lecture Notes in Computer Science.

[33]  K. Cpałka On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification , 2009 .

[34]  Piotr Dziwiñski,et al.  Hybrid State Variables - Fuzzy Logic Modelling of Nonlinear Objects , 2013, ICAISC.

[35]  Dimitris C. Theodoridis,et al.  Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method , 2011 .

[36]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[37]  L. Rutkowski,et al.  Flexible weighted neuro-fuzzy systems , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[38]  Jacek M. Zurada,et al.  Artificial Intelligence and Soft Computing - ICAISC 2008, 9th International Conference, Zakopane, Poland, June 22-26, 2008, Proceedings , 2008, ICAISC.

[39]  Jaroslaw Bilski,et al.  Parallel Realisation of QR Algorithm for Neural Networks Learning , 2004, ICAISC.

[40]  Beatriz Pérez-Sánchez,et al.  Learning from heterogeneously distributed data sets using artificial neural networks and genetic algorithms , 2012, SOCO 2012.

[41]  Bart Baesens,et al.  Editorial survey: swarm intelligence for data mining , 2010, Machine Learning.

[42]  Lukasz Laskowski Hybrid-Maximum Neural Network for Depth Analysis from Stereo-Image , 2010, ICAISC.

[43]  Krzysztof Cpalka,et al.  A New Method to Construct of Interpretable Models of Dynamic Systems , 2012, ICAISC.

[44]  Mietek A. Brdys,et al.  Optimizing Control by Robustly Feasible Model Predictive Control and Application to Drinking Water Distribution Systems , 2009, ICANN.

[45]  Krzysztof Cpalka A Method for Designing Flexible Neuro-fuzzy Systems , 2006, ICAISC.

[46]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[47]  Jacek M. Zurada,et al.  Artificial Intelligence and Soft Computing, 10th International Conference, ICAISC 2010, Zakopane, Poland, June 13-17, 2010, Part I , 2010, International Conference on Artificial Intelligence and Soft Computing.

[48]  Krystian Lapa,et al.  A New Method for Designing and Complexity Reduction of Neuro-fuzzy Systems for Nonlinear Modelling , 2013, ICAISC.

[49]  Israel A. Wagner,et al.  Smell as a Computational Resource - A Lesson We Can Learn from the Ant , 1996, ISTCS.

[50]  Leszek Rutkowski,et al.  Novel Online Speed Profile Generation for Industrial Machine Tool Based on Flexible Neuro-Fuzzy Approximation , 2012, IEEE Transactions on Industrial Electronics.

[51]  Marcin Zalasinski,et al.  Novel Algorithm for the On-Line Signature Verification Using Selected Discretization Points Groups , 2013, ICAISC.

[52]  Krystian Lapa,et al.  A New Approach to Designing Interpretable Models of Dynamic Systems , 2013, ICAISC.

[53]  Piotr Dziwiñski,et al.  Ant Focused Crawling Algorithm , 2006, ICAISC.

[54]  Leszek Rutkowski,et al.  Numerically Robust Learning Algorithms for Feed Forward Neural Networks , 2003 .

[55]  Marcin Korytkowski,et al.  On Combining Backpropagation with Boosting , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[56]  Valder Steffen,et al.  Solution of singular optimal control problems using the improved differential evolution algorithm , 2011 .

[57]  Leszek Rutkowski,et al.  Neuro-fuzzy systems derived from quasi-triangular norms , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).