Independent dynamic acousto-mechanical and electrostatic control of individual quantum dots in a LiNbO3-GaAs hybrid

We demonstrate tuning of single quantum dot emission lines by the combined action of the dynamic acoustic field of a radio frequency surface acoustic wave and a static electric field. Both tuning parameters are set all-electrically in a LiNbO3-GaAs hybrid device. The surface acoustic wave is excited directly on the strong piezoelectric LiNbO3 onto which a GaAs-based p-i-n photodiode containing a single layer of quantum dots was epitaxially transferred. We demonstrate dynamic spectral tuning with bandwidths exceeding 3 meV of single quantum dot emission lines due to deformation potential coupling. The center energy of the dynamic spectral oscillation can be independently programmed simply by setting the bias voltage applied to the diode.

[1]  Achim Wixforth,et al.  Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves. , 2014, Nano letters.

[2]  Raj B Patel,et al.  Giant Stark effect in the emission of single semiconductor quantum dots , 2010, 1011.2436.

[3]  A. Wixforth,et al.  Noninvasive probing of persistent conductivity in high quality ZnCdSe/ZnSe quantum wells using surface acoustic waves , 2010 .

[4]  M. Bichler,et al.  Coherent control of a single exciton qubit by optoelectronic manipulation , 2010 .

[5]  Y.Wu,et al.  Growth and optical properties of self-assembled InGaAs quantum posts , 2007, 0709.2392.

[6]  Y. H. Chen,et al.  Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. , 2010, Physical review letters.

[7]  Paola Atkinson,et al.  Strain-induced active tuning of the coherent tunneling in quantum dot molecules , 2014 .

[8]  T. A. Truong,et al.  Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy , 2010, 1011.1898.

[9]  Fred H. Pollak,et al.  Piezo-Electroreflectance in Ge, GaAs, and Si , 1968 .

[10]  M. S. Skolnick,et al.  Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. , 2000, Physical review letters.

[11]  C. Schneider,et al.  Laser mode feeding by shaking quantum dots in a planar microcavity , 2011, Nature Photonics.

[12]  R. Trotta,et al.  Nanomembrane Quantum‐Light‐Emitting Diodes Integrated onto Piezoelectric Actuators , 2012, Advanced materials.

[13]  Rudolf Hey,et al.  Photon anti-bunching in acoustically pumped quantum dots , 2009 .

[14]  E. Yablonovitch,et al.  Extreme selectivity in the lift‐off of epitaxial GaAs films , 1987 .

[15]  A. Wixforth,et al.  Acoustically Driven Storage of Light in a Quantum Well , 1997 .

[16]  D. Bouwmeester,et al.  Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons , 2011, 1205.1346.

[17]  Achim Wixforth,et al.  Acoustically regulated carrier injection into a single optically active quantum dot , 2013, 1306.5954.

[18]  Dirk Reuter,et al.  Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves. , 2010, Nano letters.

[19]  P. Santos,et al.  Band mixing and ambipolar transport by surface acoustic waves in GaAs quantum wells , 2004 .

[20]  G. Abstreiter,et al.  Optical spectroscopy of charged excitons in single quantum dot photodiodes , 2001 .

[21]  T. Kaldewey,et al.  Probing ultrafast carrier tunneling dynamics in individual quantum dots and molecules , 2013 .

[22]  Hansen,et al.  Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. , 1994, Physical review letters.

[23]  E. Yablonovitch,et al.  Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates , 1990 .

[24]  O. Schmidt,et al.  Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. , 2012, Physical review letters.

[25]  Eli Yablonovitch,et al.  Van der Waals bonding of GaAs on Pd leads to a permanent, solid‐phase‐topotaxial, metallurgical bond , 1991 .

[26]  Pierre Petroff,et al.  Effect of uniaxial stress on excitons in a self-assembled quantum dot , 2006 .

[27]  Peter Hanggi,et al.  Entanglement creation in a quantum-dot-nanocavity system by Fourier-synthesized acoustic pulses , 2013, 1311.6927.

[28]  Matthias Weiss,et al.  Radio frequency occupancy state control of a single nanowire quantum dot , 2014, 1404.3103.

[29]  M. Rotter,et al.  SINGLE-CHIP FUSED HYBRIDS FOR ACOUSTO-ELECTRIC AND ACOUSTO-OPTIC APPLICATIONS , 1997 .

[30]  K. Karrai,et al.  Optical emission from a charge-tunable quantum ring , 2000, Nature.

[31]  Achim Wixforth,et al.  Charge Conveyance and Nonlinear Acoustoelectric Phenomena for Intense Surface Acoustic Waves on a Semiconductor Quantum Well , 1999 .

[32]  Andrew J. Shields,et al.  Modulation of single quantum dot energy levels by a surface-acoustic-wave , 2008 .

[33]  Matthias Weiss,et al.  Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires. , 2014, Nano letters.

[34]  E C Clark,et al.  Direct observation of controlled coupling in an individual quantum dot molecule. , 2005, Physical review letters.