On mass - critical NLS with local and non-local nonlinearities

We consider the following nonlinear Schrödinger equation with the double L-critical nonlinearities iut +∆u+ |u| 4 3u+ μ ( |x| ∗ |u| ) u = 0 in R, where μ > 0 is small enough. Our first goal is to prove the existence and the non-degeneracy of the ground state Qμ. In particular, we develop an appropriate perturbation approach to prove the radial non-degeneracy property and then obtain the general non-degeneracy of the ground state Qμ. We then show the existence of finite time blowup solution with minimal mass ‖u0‖L2 = ‖Qμ‖L2. More precisely, we construct the minimal mass blowup solutions that are parametrized by the energy Eμ(u0) > 0 and the momentum Pμ(u0). In addition, the nondegeneracy property plays crucial role in this construction. keywords: Nonlinear Schrödinger equation; Non-degeneracy; Mass-Critical; Blow-up; Local and non local nonlinearities

[1]  A. Giusti,et al.  On the Kuzmin model in fractional Newtonian gravity , 2020, The European Physical Journal Plus.

[2]  Pierre Raphael,et al.  Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS , 2010, 1001.1627.

[3]  Gabriele U. Varieschi Newtonian Fractional-Dimension Gravity and MOND , 2020, Foundations of Physics.

[4]  Shu-Ming Chang,et al.  Spectra of Linearized Operators for NLS Solitary Waves , 2006, SIAM J. Math. Anal..

[5]  Joachim Krieger,et al.  Two‐soliton solutions to the three‐dimensional gravitational Hartree equation , 2008, 0811.3637.

[6]  Blowup dynamics for Mass Critical Half-wave equation in 3D , 2020, 2009.14789.

[7]  Binhua Feng,et al.  On the Cauchy problem for the Schrödinger-Hartree equation , 2015 .

[8]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[9]  Enno Lenzmann,et al.  Uniqueness of ground states for pseudorelativistic Hartree equations , 2008, 0801.3976.

[10]  M. Porta,et al.  Effective Evolution Equations from Quantum Dynamics , 2015, 1502.02498.

[11]  F. Merle,et al.  ON A SHARP LOWER BOUND ON THE BLOW-UP RATE FOR THE L CRITICAL NONLINEAR SCHRÖDINGER EQUATION , 2005 .

[12]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[13]  Chang-Lin Xiang Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions , 2015, Calculus of Variations and Partial Differential Equations.

[14]  Stefan Le Coz,et al.  Minimal mass blow up solutions for a double power nonlinear Schr\"odinger equation , 2014, 1406.6002.

[15]  Xinfu Li Global existence and blowup for Choquard equations with an inverse-square potential , 2019, Journal of Differential Equations.

[16]  Newtonian Fractional Gravity and Disk Galaxies , 2020, 2008.04737.

[17]  E. Lenzmann,et al.  On Stability of Pseudo-Conformal Blowup for L2-critical Hartree NLS , 2008, 0808.2324.

[18]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[19]  Lin Zhao,et al.  Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation , 2010 .

[20]  Vladimir Georgiev,et al.  Nondispersive solutions to the mass critical half-wave equation in two dimensions , 2020, Communications in Partial Differential Equations.

[21]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[22]  Rémi Carles,et al.  Minimal Blow-Up Solutions to the Mass-Critical Inhomogeneous NLS Equation , 2009, 0904.1317.

[23]  Merle,et al.  On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation , 2012, 1202.5218.

[24]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[25]  Frank Merle,et al.  On universality of blow-up profile for L2 critical nonlinear Schrödinger equation , 2004 .

[26]  I. Ianni Sign-changing radial solutions for the Schr\"odinger-Poisson-Slater problem , 2011, 1108.2803.

[27]  V. Georgiev,et al.  On the radiality of constrained minimizers to the Schrödinger–Poisson–Slater energy , 2011, 1109.3964.

[28]  Y. Martel,et al.  Construction of a minimal mass blow up solution of the modified Benjamin–Ono equation , 2016, 1605.01837.

[29]  Frank Merle,et al.  Profiles and Quantization of the Blow Up Mass for Critical Nonlinear Schrödinger Equation , 2005 .

[30]  G. Venkov,et al.  Existence and uniqueness of ground states for p-Choquard model , 2018, Nonlinear Analysis.

[31]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[32]  Frank Merle,et al.  Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation , 2003 .

[33]  D. Ruiz On the Schrödinger–Poisson–Slater System: Behavior of Minimizers, Radial and Nonradial Cases , 2009, 0904.2924.

[34]  Vladimir I. Clue Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.

[35]  Jean Van Schaftingen,et al.  Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics , 2012, 1205.6286.

[36]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[37]  Juan Soler,et al.  Long-Time Dynamics of the Schrödinger–Poisson–Slater System , 2004 .

[38]  J. Szeftel,et al.  The instability of Bourgain-Wang solutions for the L2 critical NLS , 2010, 1010.5168.

[39]  Dun Zhao,et al.  Concentration behavior of nonlinear Hartree-type equation with almost mass critical exponent , 2018, Zeitschrift für angewandte Mathematik und Physik.

[40]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[41]  F. Merle,et al.  Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power , 1993 .

[42]  Frank Merle,et al.  Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity , 1990 .

[43]  E. Lenzmann,et al.  Nondispersive solutions to the L2-critical Half-Wave Equation , 2012, 1203.2476.

[44]  Walter A. Strauss,et al.  Existence of solitary waves in higher dimensions , 1977 .