MODULUS-BASED SUCCESSIVE OVERRELAXATION METHOD FOR PRICING AMERICAN OPTIONS

We consider the modulus-based successive overrelaxation met- hod for the linear complementarity problems from the discretization of Black-Scholes American options model. The H+-matrix property of the system matrix discretized from American option pricing which guaran- tees the convergence of the proposed method for the linear complementar- ity problem is analyzed. Numerical experiments confirm the theoretical analysis, and further show that the modulus-based successive overrelax- ation method is superior to the classical projected successive overrelaxation method with optimal parameter.

[1]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[2]  Jari Toivanen,et al.  Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..

[3]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[4]  Apostolos Hadjidimos,et al.  Nonstationary Extrapolated Modulus Algorithms for the solution of the Linear Complementarity Problem , 2009 .

[5]  Alan G. White,et al.  Valuing Derivative Securities Using the Explicit Finite Difference Method , 1990, Journal of Financial and Quantitative Analysis.

[6]  O. Mangasarian Solution of symmetric linear complementarity problems by iterative methods , 1977 .

[7]  Jimy Jaffe,et al.  Tools for Computational Finance , 2013 .

[8]  Y. Ye,et al.  A Class of Linear Complementarity Problems Solvable in Polynomial Time , 1991 .

[9]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[10]  Yves Achdou,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[11]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[12]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[13]  Rüdiger U. Seydel Tools for Computational Finance (Universitext) , 2006 .

[14]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[15]  Zhong-Zhi Bai,et al.  Modulus‐based matrix splitting iteration methods for linear complementarity problems , 2010, Numer. Linear Algebra Appl..

[16]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[17]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[18]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[19]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[20]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[21]  Jari Toivanen,et al.  Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.

[22]  Mei-Qun Jiang,et al.  A modified modulus method for symmetric positive‐definite linear complementarity problems , 2009, Numer. Linear Algebra Appl..