A Semiparametric Bayesian Approach to Wiener System Identification
暂无分享,去创建一个
[1] A. Hammerstein. Nichtlineare Integralgleichungen nebst Anwendungen , 1930 .
[2] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .
[3] Karim Abed-Meraim,et al. Blind system identification , 1997, Proc. IEEE.
[4] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[5] Er-Wei Bai. A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..
[6] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[7] Rik Pintelon,et al. Blind Maximum-Likelihood Identification of Wiener Systems , 2009, IEEE Transactions on Signal Processing.
[8] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[9] G. Pillonetto,et al. Gaussian Processes for Wiener-Hammerstein system identification , 2009 .
[10] Emily B. Fox,et al. Bayesian nonparametric learning of complex dynamical phenomena , 2009 .
[11] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[12] George Casella,et al. A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data , 2008, 0808.2902.
[13] Thomas Bo Schön,et al. Ecient Particle Markov Chain Monte Carlo { Bayesian inference with a couple of particles , 2011 .
[14] Bart De Moor,et al. Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .
[15] L. Ljung,et al. Blind Identification of Wiener Models , 2011 .
[16] Aurélien Garivier,et al. Sequential Monte Carlo smoothing for general state space hidden Markov models , 2011, 1202.2945.
[17] Fredrik Lindsten,et al. On the use of backward simulation in the particle Gibbs sampler , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).