Two-dimensional centrosymmetrical antiferromagnets for spin photogalvanic devices

[1]  Xiaohong Zheng,et al.  Ferroelectric control of electron half-metallicity in A -type antiferromagnets and its application to nonvolatile memory devices , 2020, Physical Review B.

[2]  Di Xiao,et al.  Tunable Layer Circular Photogalvanic Effect in Twisted Bilayers. , 2019, Physical review letters.

[3]  Xiaohong Zheng,et al.  Robust generation of half-metallic transport and pure spin current with photogalvanic effect in zigzag silicene nanoribbons , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  S. Pennycook,et al.  Chemically Exfoliated VSe2 Monolayers with Room‐Temperature Ferromagnetism , 2019, Advanced materials.

[5]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[6]  Xiaodong Xu,et al.  Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3 , 2019, Nature.

[7]  G. Fiori,et al.  Tunnel-Field-Effect Spin Filter from Two-Dimensional Antiferromagnetic Stanene , 2018, Physical Review Applied.

[8]  Xiaohong Zheng,et al.  Photogalvanic effect induced fully spin polarized current and pure spin current in zigzag SiC nanoribbons. , 2018, Physical chemistry chemical physics : PCCP.

[9]  Jian Wang,et al.  Two-Dimensional Photogalvanic Spin-Battery , 2018, Physical Review Applied.

[10]  Satoshi Okamoto,et al.  Stacking-Dependent Magnetism in Bilayer CrI3. , 2018, Nano letters.

[11]  J. Chu,et al.  Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors , 2018, Proceedings of the National Academy of Sciences.

[12]  Kenji Watanabe,et al.  Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2 , 2018, Nature Physics.

[13]  C. Kane,et al.  Spatially dispersive circular photogalvanic effect in a Weyl semimetal , 2018, Nature Materials.

[14]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[15]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[16]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[17]  T. Morimoto,et al.  Quantized circular photogalvanic effect in Weyl semimetals , 2016, Nature Communications.

[18]  P. Haney,et al.  Circular Photogalvanic Effect in Organometal Halide Perovskite CH3NH3PbI3. , 2016, Applied physics letters.

[19]  Lei Liu,et al.  Photogalvanic effect in monolayer black phosphorus , 2015, Nanotechnology.

[20]  R. Agarwal,et al.  Voltage-tunable circular photogalvanic effect in silicon nanowires , 2015, Science.

[21]  Lei Liu,et al.  Generation and transport of valley-polarized current in transition-metal dichalcogenides , 2014 .

[22]  Chanyong Hwang,et al.  Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons , 2014, Nature.

[23]  Hongtao Yuan,et al.  Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. , 2014, Nature nanotechnology.

[24]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[25]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[26]  S. Louie,et al.  Atomically perfect torn graphene edges and their reversible reconstruction , 2013, Nature Communications.

[27]  Hong Guo,et al.  Quantum Transport Modeling From First Principles , 2013, Proceedings of the IEEE.

[28]  Fengmin Wu,et al.  Symmetry-dependent transport properties and magnetoresistance in zigzag silicene nanoribbons , 2012 .

[29]  A. Mal’shukov,et al.  Equilibrium circular photogalvanic effect in a hybrid superconductor-semiconductor system. , 2011, Physical review letters.

[30]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[31]  Z. J. Yang,et al.  Anomalous photogalvanic effect of circularly polarized light incident on the two-dimensional electron gas in Al{x}Ga{1-x}N/GaN heterostructures at room temperature. , 2008, Physical review letters.

[32]  Jinlong Yang,et al.  Will zigzag graphene nanoribbon turn to half metal under electric field , 2007, 0708.1213.

[33]  S. Louie,et al.  Half-metallic graphene nanoribbons , 2007, Nature.

[34]  S. Shen,et al.  Deduction of pure spin current from the linear and circular spin photogalvanic effect in semiconductor quantum wells , 2006, cond-mat/0612542.

[35]  Sergey D. Ganichev,et al.  Zero-bias spin separation , 2006, NanoScience + Engineering.

[36]  Hong Guo,et al.  Spin-battery and spin-current transport through a quantum dot , 2004 .

[37]  Sergey Ganichev,et al.  Spin photocurrents in quantum wells , 2003 .

[38]  G. Abstreiter,et al.  Removal of spin degeneracy in p-SiGe quantum wells demonstrated by spin photocurrents , 2002 .

[39]  L. Henrickson Nonequilibrium photocurrent modeling in resonant tunneling photodetectors , 2002 .

[40]  P. Levy,et al.  Mechanisms of spin-polarized current-driven magnetization switching. , 2002, Physical review letters.

[41]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[42]  E. Ivchenko,et al.  Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells , 2000, physics/0008002.

[43]  D. Tománek,et al.  Photogalvanic effects in heteropolar nanotubes , 2000, Physical review letters.

[44]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[45]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[48]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[49]  G. E. Pikus,et al.  Observation of a photo-emf that depends on the sign of the circular polarization of the light , 1978 .

[50]  E. Ivchenko,et al.  New photogalvanic effect in gyrotropic crystals , 1978 .

[51]  V. Belinicher Space-oscillating photocurrent in crystals without symmetry center , 1978 .

[52]  Hong Guo,et al.  h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator. , 2017, Nanoscale.