A HIGH ACCURACY LERAY-DECONVOLUTION MODEL OF TURBULENCE AND ITS LIMITING BEHAVIOR

In 1934, J. Leray proposed a regularization of the Navier–Stokes equations whose limits were weak solutions of the Navier–Stokes equations. Recently, a modification of the Leray model, called the Leray-alpha model, has attracted interest for turbulent flow simulations. One common drawback of the Leray type regularizations is their low accuracy. Increasing the accuracy of a simulation based on a Leray regularization requires cutting the averaging radius, i.e. remeshing and resolving on finer meshes. This article analyzes on a family of Leray type models of arbitrarily high orders of accuracy for a fixed averaging radius. We establish the basic theory of the entire family including limiting behavior as the averaging radius decreases to zero (a simple extension of results known for the Leray model). We also give a more technically interesting result on the limit as the order of the models increases with a fixed averaging radius. Because of this property, increasing the accuracy of the model is potentially cheaper than decreasing the averaging radius (or meshwidth) and high order models are doubly interesting.

[1]  Roger Temam,et al.  Navier-Stokes Equations and Turbulence by C. Foias , 2001 .

[2]  William Layton,et al.  On a well-posed turbulence model , 2005 .

[3]  C. Foias,et al.  Energy dissipation in body-forced turbulence , 2001, Journal of Fluid Mechanics.

[4]  R. Temam Navier-Stokes Equations , 1977 .

[5]  B. Geurts Elements of direct and large-eddy simulation , 2003 .

[6]  Nikolaus A. Adams,et al.  A Subgrid-Scale Deconvolution Approach for Shock Capturing , 2002 .

[7]  The Approximate Deconvolution Model for Compressible Flows: Isotropic Turbulence and Shock-Boundary-Layer Interaction , 2002 .

[8]  B. Geurts Inverse modeling for large-eddy simulation , 1997 .

[9]  Darryl D. Holm,et al.  On a Leray–α model of turbulence , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  C. Foias What do the Navier-Stokes equations tell us about turbulence , 1995 .

[11]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[12]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[13]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[14]  K. Sreenivasan On the scaling of the turbulent energy dissipation rate , 1984 .

[15]  N. Adams,et al.  An approximate deconvolution procedure for large-eddy simulation , 1999 .

[16]  L. Biferale,et al.  Dynamics and statistics of heavy particles in turbulent flows , 2006, nlin/0601027.

[17]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[18]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[19]  Leo G. Rebholz,et al.  Numerical analysis and computational testing of a high accuracy Leray‐deconvolution model of turbulence , 2008 .

[20]  Nikolaus A. Adams,et al.  Deconvolution Methods for Subgrid-Scale Approximation in Large-Eddy Simulation , 2001 .

[21]  Alexei Ilyin,et al.  A modified-Leray-α subgrid scale model of turbulence , 2006 .

[22]  Jean Leray,et al.  Essai sur les mouvements plans d'un fluide visqueux que limitent des parois. , 1934 .

[23]  Xiaoming Wang Time averaged energy dissipation rate for shear driven flows in R n , 1997 .

[24]  Leray and LANS-$\alpha$ modeling of turbulent mixing , 2006 .

[25]  V. Chepyzhov,et al.  On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system , 2006 .

[26]  Jean-Luc Guermond,et al.  Subgrid stabilization of Galerkin approximations of monotone operators , 1999 .

[27]  Darryl D. Holm,et al.  Leray and LANS-α modelling of turbulent mixing , 2005, nlin/0504038.

[28]  William Layton,et al.  APPROXIMATION OF THE LARGER EDDIES IN FLUID MOTIONS II: A MODEL FOR SPACE-FILTERED FLOW , 2000 .

[29]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[30]  N. Adams,et al.  An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows , 2001 .

[31]  L. A. Aguirre,et al.  Structure-selection techniques applied to continous-time nonlinear models , 2001 .

[32]  Charles R. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[33]  A. Dunca,et al.  On the Stolz-Adams Deconvolution Model for the Large-Eddy Simulation of Turbulent Flows , 2006, SIAM J. Math. Anal..

[34]  Andreas Muschinski,et al.  A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES , 1996, Journal of Fluid Mechanics.

[35]  Katepalli R. Sreenivasan,et al.  An update on the energy dissipation rate in isotropic turbulence , 1998 .

[36]  Darryl D. Holm,et al.  The Navier–Stokes-alpha model of fluid turbulence , 2001, nlin/0103037.

[37]  N. Adams,et al.  The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction , 2001 .

[38]  J. Guermond,et al.  On the construction of suitable solutions to the Navier-Stokes equations and questions regarding the definition of large eddy simulation , 2005 .

[39]  Darryl D. Holm,et al.  Regularization modeling for large-eddy simulation , 2002, nlin/0206026.

[40]  Bernardus J. Geurts Modern Simulation Strategies for Turbulent Flow , 2001 .

[41]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[42]  Leo G. Rebholz,et al.  Conservation laws of turbulence models , 2007 .

[43]  W. Rodi,et al.  Advances in LES of Complex Flows , 2002 .

[44]  Constantin,et al.  Energy dissipation in shear driven turbulence. , 1992, Physical review letters.

[45]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[46]  S. Childress,et al.  Bounds on dissipation for Navier-Strokes flow with Kologorov forcing , 2001 .

[47]  Roger Lewandowski,et al.  Vorticities in a LES Model for 3D Periodic Turbulent Flows , 2006 .

[48]  Monika Neda,et al.  Truncation of scales by time relaxation , 2007 .

[49]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[50]  William J. Layton,et al.  A simple and stable scale-similarity model for large Eddy simulation: Energy balance and existence of weak solutions , 2003, Appl. Math. Lett..

[51]  M. Germano Differential filters of elliptic type , 1986 .