Coherent phonons in carbon based nanostructures

We have developed a theory for the generation and detection of coherent phonons in carbon based nanotstructures such as single walled nanotubes (SWNTs), graphene, and graphene nanoribbons. Coherent phonons are generated via the deformation potential electron/hole-phonon interaction with ultrafast photo-excited carriers. They modulate the reflectance or absorption of an optical probe pules on a THz time scale and might be useful for optical modulators. In our theory the electronic states are treated in a third nearest neighbor extended tight binding formalism which gives a good description of the states over the entire Brillouin zone while the phonon states are treated using valence force field models which include bond stretching, in-plane and out-of-plane bond bending, and bond twisting interactions up to fourth neighbor distances. We compare our theory to experiments for the low frequency radial breathing mode (RBM) in micelle suspended single-walled nanotubes (SWNTs). The analysis of such data provides a wealth of information on the dynamics and interplay of photons, phonons and electrons in these carbon based nanostructures.

[1]  G. D. Sanders,et al.  Resonant coherent phonon spectroscopy of single-walled carbon nanotubes , 2008, 0812.1953.

[2]  R. Smalley,et al.  Coherent lattice vibrations in single-walled carbon nanotubes. , 2006, Nano letters.

[3]  S. Hirsch Carbon Nanotubes Synthesis Structure Properties And Applications , 2016 .

[4]  Steven G. Louie,et al.  Diameter and chirality dependence of exciton properties in carbon nanotubes , 2006 .

[5]  H. Wong,et al.  Carbon Nanotube And Graphene Device Physics , 2010 .

[6]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[7]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[8]  M. Terrones Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes , 2003 .

[9]  Hugh Aldersey-Williams,et al.  The most beautiful molecule , 1994 .

[10]  W. Choi,et al.  Graphene : Synthesis and Applications , 2016 .

[11]  G. D. Sanders,et al.  Chirality-selective excitation of coherent phonons in carbon nanotubes by femtosecond optical pulses. , 2008, Physical review letters.

[12]  Stanton,et al.  Theory of coherent phonon oscillations in semiconductors. , 1994, Physical review letters.

[13]  G. D. Sanders,et al.  Coherent phonons in carbon nanotubes and graphene , 2011, 1205.6023.

[14]  Tsuneya Ando,et al.  Theory of Electronic States and Transport in Carbon Nanotubes , 2005 .

[15]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[16]  M. Dresselhaus,et al.  Cutting lines near the Fermi energy of single-wall carbon nanotubes , 2005 .

[17]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[18]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[19]  M. P. Anantram,et al.  Physics of carbon nanotube electronic devices , 2006 .

[20]  G. D. Sanders,et al.  Excitonic effects on coherent phonon dynamics in single-wall carbon nanotubes , 2013, 1305.1424.

[21]  K. Novoselov Nobel Lecture: Graphene: Materials in the Flatland , 2011 .

[22]  G. D. Sanders,et al.  Theory of coherent phonons in carbon nanotubes and graphene nanoribbons , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Peter J. F. Harris,et al.  Carbon Nanotube Science: Frontmatter , 2009 .

[24]  S. Baik,et al.  Ultrafast generation of fundamental and multiple-order phonon excitations in highly enriched (6,5) single-wall carbon nanotubes. , 2013, Nano letters.

[25]  Mauricio Terrones,et al.  Carbon Nanotubes and Related Structures: New materials for the Twenty-first Century , 2000 .

[26]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[27]  Peter J. F. Harris,et al.  Carbon Nanotube Science: Synthesis, Properties and Applications , 2009 .

[28]  M. Dresselhaus,et al.  Chirality dependence of exciton effects in single-wall carbon nanotubes: Tight-binding model , 2007 .

[29]  M. Sfeir,et al.  Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. , 2005, Nano letters.

[30]  G. D. Sanders,et al.  Chirality dependence of coherent phonon amplitudes in single-wall carbon nanotubes , 2011 .

[31]  M. Dresselhaus,et al.  Exciton photophysics of carbon nanotubes. , 2007, Annual review of physical chemistry.

[32]  Andre K. Geim,et al.  Nobel Lecture: Random walk to graphene* , 2011 .

[33]  M. Dresselhaus,et al.  Phonon modes in carbon nanotubules , 1993 .

[34]  G. D. Sanders,et al.  Coherent radial-breathing-like phonons in graphene nanoribbons , 2012, 1201.5339.

[35]  J. Kim,et al.  Polarization dependence of coherent phonon generation and detection in highly-aligned single-walled carbon nanotubes , 2010, 1007.3144.

[36]  Maurizio Prato,et al.  [60]Fullerene chemistry for materials science applications , 1997 .