Variable objective search

This paper introduces the variable objective search framework for combinatorial optimization. The method utilizes different objective functions used in alternative mathematical programming formulations of the same combinatorial optimization problem in an attempt to improve the solutions obtained using each of these formulations individually. The proposed technique is illustrated using alternative quadratic unconstrained binary formulations of the classical maximum independent set problem in graphs.

[1]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[2]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[3]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[4]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[5]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[6]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[7]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[8]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[9]  Panos M. Pardalos,et al.  Finding independent sets in a graph using continuous multivariable polynomial formulations , 2001, J. Glob. Optim..

[10]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..