Production models as a structural basis for automatic speech recognition

[1]  Kuldip K. Paliwal,et al.  Automatic Speech and Speaker Recognition: Advanced Topics , 1999 .

[2]  R. S. Mcgowan,et al.  SPEECH PRODUCTION PARAMETERS FOR AUTOMATIC SPEECH RECOGNITION 43.72.NE, 43.70.AJ , 1997 .

[3]  R. S. McGowan,et al.  Acoustic 1996: Speech production parameters for automatic speech recognition , 1997 .

[4]  Hermann Ney,et al.  A word graph algorithm for large vocabulary continuous speech recognition , 1994, Comput. Speech Lang..

[5]  Li Deng,et al.  Optimal filtering and smoothing for speech recognition using a stochastic target model , 1996, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96.

[6]  John Hogden A maximum likelihood approach to estimating speech articulator positions from speech acoustics , 1996 .

[7]  Li Deng,et al.  Transitional speech units and their representation by regressive Markov states: applications to speech recognition , 1996, IEEE Trans. Speech Audio Process..

[8]  Martin J. Russell,et al.  Modeling speech variability with segmental HMMs , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[9]  Masaaki Honda,et al.  A model of articulator trajectory formation based on the motor tasks of vocal‐tract shapes , 1996 .

[10]  Hynek Hermansky,et al.  Towards increasing speech recognition error rates , 1995, Speech Commun..

[11]  D. Ostry,et al.  The equilibrium point hypothesis and its application to speech motor control. , 1996, Journal of speech and hearing research.

[12]  M M Sondhi,et al.  The potential role of speech production models in automatic speech recognition. , 1996, The Journal of the Acoustical Society of America.

[13]  Norman J. Lass,et al.  Principles of Experimental Phonetics , 1996 .

[14]  S. Young Large Vocabulary Continuous Speech Recognition : a ReviewSteve , 1996 .

[15]  J. Perkell Properties of the tongue help to define vowel categories: hypotheses based on physiologically-oriented modeling , 1996 .

[16]  Biing-Hwang Juang,et al.  Statistical and Discriminative Methods for Speech Recognition , 1996 .

[17]  Biing-Hwang Juang,et al.  An Overview of Automatic Speech Recognition , 1996 .

[18]  Mitch Weintraub,et al.  Automatic Learning of Word Pronunciation from Data , 1996 .

[19]  Sharlene A. Liu,et al.  Landmark detection for distinctive feature-based speech recognition , 1996 .

[20]  Steve J. Young,et al.  Towards improved speech recognition using a speech production model , 1995, EUROSPEECH.

[21]  Sadaoki Furui Flexible speech recognition , 1995, EUROSPEECH.

[22]  Jacques Durand,et al.  Frontiers of Phonology: Atoms, Structures and Derivations , 1995 .

[23]  Li Deng,et al.  Improved speech modeling and recognition using multi-dimensional articulatory states as primitive speech units , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[24]  J Makhoul,et al.  State of the art in continuous speech recognition. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Jhg Wright,et al.  Proc. IEEE Workshop on Automatic Speech Recognition , 1995 .

[26]  Michael I. Jordan,et al.  Goal-based speech motor control: A theoretical framework and some preliminary data , 1995 .

[27]  Li Deng,et al.  Maximum-likelihood estimation for articulatory speech recognition using a stochastic target model , 1995, EUROSPEECH.

[28]  Li Deng,et al.  A Markov model containing state-conditioned second-order non-stationarity: application to speech recognition , 1995, Comput. Speech Lang..

[29]  Carol Y. Espy-Wilson,et al.  Speech parameterization based on phonetic features: application to speech recognition , 1995, EUROSPEECH.

[30]  Keiichi Tokuda,et al.  An algorithm for speech parameter generation from continuous mixture HMMs with dynamic features , 1995, EUROSPEECH.

[31]  Frank H. Guenther,et al.  A MODELING FRAMEWORK FOR SPEECH MOTOR DEVELOPMENT AND KINEMATIC ARTICULATOR CONTROL , 1995 .

[32]  L. Deng,et al.  CONTEXT-DEPENDENT MARKOV MODEL STRUCTURED BY LOCUS EQUATIONS : APPLICATIONS TO PHONETIC CLASSIFICATION , 1994 .

[33]  Li Deng,et al.  Automatic speech recognition using dynamically defined speech units , 1994, ICSLP.

[34]  Masaaki Honda,et al.  A dynamical articulatory model using potential task representation , 1994, ICSLP.

[35]  K. Stevens,et al.  Feature geometry and the vocal tract , 1994, Phonology.

[36]  L. Deng,et al.  A stochastic framework for articulatory speech recognition , 1994 .

[37]  Richard S. McGowan,et al.  Recovering articulatory movement from formant frequency trajectories using task dynamics and a genetic algorithm: Preliminary model tests , 1994, Speech Commun..

[38]  Biing-Hwang Juang,et al.  A Minimum Error Rate Pattern Recognition Approach to Speech Recognition , 1994, Int. J. Pattern Recognit. Artif. Intell..

[39]  Mohamed I. Elmasry,et al.  Analysis of the correlation structure for a neural predictive model with application to speech recognition , 1994, Neural Networks.

[40]  Xiaodong Sun,et al.  Speech recognition using hidden Markov models with polynomial regression functions as nonstationary states , 1994, IEEE Trans. Speech Audio Process..

[41]  Man Mohan Sondhi,et al.  Techniques for estimating vocal-tract shapes from the speech signal , 1994, IEEE Trans. Speech Audio Process..

[42]  Hamid Sheikhzadeh,et al.  Waveform-based speech recognition using hidden filter models: parameter selection and sensitivity to power normalization , 1994, IEEE Trans. Speech Audio Process..

[43]  Li Deng,et al.  Speech recognition using the atomic speech units constructed from overlapping articulatory features , 1994, EUROSPEECH.

[44]  Hervé Bourlard,et al.  Connectionist Speech Recognition: A Hybrid Approach , 1993 .

[45]  J. R. Rohlicek,et al.  ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition , 1993, IEEE Trans. Speech Audio Process..

[46]  Li Deng,et al.  Hidden Markov model representation of quantized articulatory features for speech recognition , 1993, Comput. Speech Lang..

[47]  Mei-Yuh Hwang,et al.  Predicting unseen triphones with senones , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[48]  L. Deng Design of a feature‐based speech recognizer aiming at integration of auditory processing, signal modeling, and phonological structure of speech , 1993 .

[49]  Oded Ghitza,et al.  Hidden Markov models with templates as non-stationary states: an application to speech recognition , 1993, Comput. Speech Lang..

[50]  Ellen Eide,et al.  A linguistic feature representation of the speech waveform , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[51]  L Deng,et al.  Structural design of hidden Markov model speech recognizer using multivalued phonetic features: comparison with segmental speech units. , 1992, The Journal of the Acoustical Society of America.

[52]  Stefanie Shattuck-Hufnagel,et al.  Implementation of a model for lexical access based on features , 1992, ICSLP.

[53]  C. Browman,et al.  Articulatory Phonology: An Overview , 1992, Phonetica.

[54]  Li Deng,et al.  A generalized hidden Markov model with state-conditioned trend functions of time for the speech signal , 1992, Signal Process..

[55]  Pascal Perrier,et al.  The geometric vocal tract variables controlled for vowel production: proposals for constraining acoustic-to-articulatory inversion , 1992 .

[56]  S. Maeda On articulatory and acoustic variabilities , 1991 .

[57]  Frank Fallside,et al.  A recurrent error propagation network speech recognition system , 1991 .

[58]  Helen Meng,et al.  Signal representation comparison for phonetic classification , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[59]  Gérard Bailly,et al.  Formant trajectories as audible gestures: An alternative for speech synthesis , 1991 .

[60]  L. Deng,et al.  Modeling microsegments of stop consonants in a hidden Markov model based word recognizer , 1990 .

[61]  J. Goldsmith Autosegmental and Metrical Phonology , 1990 .

[62]  Patricia A. Keating,et al.  Papers in Laboratory Phonology: The window model of coarticulation: articulatory evidence , 1990 .

[63]  John Kingston,et al.  Papers in Laboratory Phonology: Index of names , 1990 .

[64]  L Saltzman Elliot,et al.  A Dynamical Approach to Gestural Patterning in Speech Production , 1989 .

[65]  Reiner Wilhelms Schätzung von artikulatorischen Bewegungen eines stilisierten Artikulatormodells aus dem Sprachsignal , 1987 .

[66]  R. Port,et al.  Stop Epenthesis in English , 1986 .

[67]  Elliot Saltzman,et al.  The dynamical perspectives on speech production: Data and theory , 1986 .

[68]  L. R. Rabiner,et al.  An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition , 1983, The Bell System Technical Journal.

[69]  S. Anderson Nasal Consonants and the Internal Structure of Segments , 1976 .

[70]  C.H. Coker,et al.  A model of articulatory dynamics and control , 1976, Proceedings of the IEEE.

[71]  Raymond D. Kent,et al.  chapter 3 – Models of Speech Production , 1976 .

[72]  L. Baum,et al.  An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process , 1972 .

[73]  P. MacNeilage Motor control of serial ordering of speech. , 1970, Psychological review.

[74]  R. Houde Tongue‐Body Motion during Selected Speech Sounds , 1968 .