Large deviations for the empirical mean of an $$M/M/1$$ queue

Let $$(Q(k):k\ge 0)$$ be an $$M/M/1$$ queue with traffic intensity $$\rho \in (0,1).$$ Consider the quantity $$\begin{aligned} S_{n}(p)=\frac{1}{n}\sum _{j=1}^{n}Q\left( j\right) ^{p} \end{aligned}$$for any $$p>0.$$ The ergodic theorem yields that $$S_{n}(p) \rightarrow \mu (p) :=E[Q(\infty )^{p}]$$, where $$Q(\infty )$$ is geometrically distributed with mean $$\rho /(1-\rho ).$$ It is known that one can explicitly characterize $$I(\varepsilon )>0$$ such that $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n}\log P\big (S_{n}(p)<\mu \left( p\right) -\varepsilon \big ) =-I\left( \varepsilon \right) ,\quad \varepsilon >0. \end{aligned}$$In this paper, we show that the approximation of the right tail asymptotics requires a different logarithm scaling, giving $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n^{1/(1+p)}}\log P\big (S_{n} (p)>\mu \big (p\big )+\varepsilon \big )=-C\big (p\big ) \varepsilon ^{1/(1+p)}, \end{aligned}$$where $$C(p)>0$$ is obtained as the solution of a variational problem. We discuss why this phenomenon—Weibullian right tail asymptotics rather than exponential asymptotics—can be expected to occur in more general queueing systems.

[1]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[2]  Jose H. Blanchet,et al.  Optimal Sampling of Overflow Paths in Jackson Networks , 2013, Math. Oper. Res..

[3]  D. Denisov,et al.  Large deviations for random walks under subexponentiality: The big-jump domain , 2007, math/0703265.

[4]  Michel Mandjes,et al.  On the tail asymptotics of the area swept under the Brownian storage graph , 2014 .

[5]  A. Borovkov Estimates for the distribution of sums and maxima of sums of random variables without the cramer condition , 2000 .

[6]  S. Meyn Large deviation asymptotics and control variates for simulating large functions , 2006, math/0603328.

[7]  E. Çinlar Markov additive processes. II , 1972 .

[8]  P. Ney,et al.  MARKOV ADDITIVE PROCESSES II. LARGE DEVIATIONS , 1987 .

[9]  Sean P. Meyn Control Techniques for Complex Networks: Workload , 2007 .

[10]  Sean P. Meyn,et al.  Most likely paths to error when estimating the mean of a reflected random walk , 2009, Perform. Evaluation.

[11]  S. Varadhan,et al.  Large deviations , 2019, Graduate Studies in Mathematics.

[12]  L. Rozovskii Probabilities of Large Deviations of Sums of Independent Random Variables with Common Distribution Function in the Domain of Attraction of the Normal Law , 1990 .

[13]  H. D. Miller A Convexity Property in the Theory of Random Variables Defined on a Finite Markov Chain , 1961 .

[14]  S. Meyn,et al.  Spectral theory and limit theorems for geometrically ergodic Markov processes , 2002, math/0209200.

[15]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[16]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[17]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[18]  S. Asmussen,et al.  Applied Probability and Queues , 1989 .

[19]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .