Robust adaptive fuzzy-neural control of nonlinear dynamical systems using generalized projection update law and variable structure controller

In this paper, a robust adaptive fuzzy-neural control scheme for nonlinear dynamical systems is proposed to attenuate the effects caused by unmodeled dynamics, disturbance, and modeling errors. A generalized projection update law, which generalizes the projection algorithm modification and the switching-sigma adaptive law, is used to tune the adjustable parameters for preventing parameter drift and confining states of the system to the specified regions. Moreover, a variable structure control method is incorporated into the control law so that the derived controller is robust with respect to unmodeled dynamics, disturbances, and modeling errors. To demonstrate the effectiveness of the proposed method, several examples are illustrated in this paper.

[1]  Zengqi Sun,et al.  Analysis and design of fuzzy controller and fuzzy observer , 1998, IEEE Trans. Fuzzy Syst..

[2]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control - design and stability analysis , 1994 .

[3]  Frank L. Lewis,et al.  Adaptive tuning of fuzzy logic identifier for unknown non-linear systems , 1994 .

[4]  Kiriakos Kiriakidis,et al.  Fuzzy model-based control of complex plants , 1998, IEEE Trans. Fuzzy Syst..

[5]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[6]  Visakan Kadirkamanathan,et al.  Dynamic structure neural networks for stable adaptive control of nonlinear systems , 1996, IEEE Trans. Neural Networks.

[7]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[8]  Kevin M. Passino,et al.  Stable adaptive control using fuzzy systems and neural networks , 1996, IEEE Trans. Fuzzy Syst..

[9]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[10]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[11]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Eli Tzirkel-Hancock,et al.  Stable control of nonlinear systems using neural networks , 1992 .

[13]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[14]  Richard D. Braatz,et al.  On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.

[15]  Manolis A. Christodoulou,et al.  Identification of nonlinear systems using new dynamic neural network structures , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[16]  M. Sugeno,et al.  Fuzzy modeling and control of multilayer incinerator , 1986 .

[17]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[18]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[19]  Marios M. Polycarpou,et al.  Modelling, Identification and Stable Adaptive Control of Continuous-Time Nonlinear Dynamical Systems Using Neural Networks , 1992, 1992 American Control Conference.

[20]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[21]  Euntai Kim,et al.  A transformed input-domain approach to fuzzy modeling , 1998, IEEE Trans. Fuzzy Syst..

[22]  Robert Babuska,et al.  Constructing fuzzy models by product space clustering , 1997 .

[23]  Kwee-Bo Sim,et al.  On developing an adaptive neural-fuzzy control system , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[24]  Tsu-Tian Lee,et al.  On-line tuning of fuzzy-neural network for adaptive control of nonlinear dynamical systems , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Reza Langari,et al.  Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques , 1995, IEEE Trans. Fuzzy Syst..

[26]  Anuradha M. Annaswamy,et al.  Stable Neural Controllers for Nonlinear Dynamic Systems , 1998, Autom..

[27]  Tsu-Tian Lee,et al.  Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[28]  Jian-Xin Xu,et al.  Self‐tuning type variable structure control method for a class of nonlinear systems , 1998 .

[29]  Tor Arne Johansen,et al.  Transient Performance, Robustness and Off-Equilibrium Linearisation in Fuzzy Gain Scheduled Control , 1998 .

[30]  Gang Feng,et al.  Analysis and design of fuzzy control systems using dynamic fuzzy-state space models , 1999, IEEE Trans. Fuzzy Syst..

[31]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[32]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[33]  Bor-Sen Chen,et al.  H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach , 1996, IEEE Trans. Fuzzy Syst..

[34]  Yih-Guang Leu,et al.  Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems , 1999, IEEE Trans. Robotics Autom..