Effect of Mesh Quality on Flux Reconstruction in Multi-dimensions

Theoretical methods are developed to understand the effect of non-uniform grids on Flux Reconstruction (FR) in multi-dimensions. A better theoretical understanding of the effect of wave angle and grid deformation is established. FR is shown to have a smaller variation in properties than some finite difference counterparts. Subsequent numerical experiments on the Taylor–Green Vortex with jittered elements show the effect of localised regions of expansion and contraction. The effect this had on Nodal DG-like schemes was to increase the dissipation, whereas for more typical FR schemes the effect was to increase the dispersion. Some comparison is made between second-order FR and a second-order finite volume (FV) scheme. FR is found to be more resilient to mesh deformation, however, FV is found to be more resolved when operated at second order on the same mesh.

[1]  Philipp Birken,et al.  L2Roe: a low dissipation version of Roe's approximate Riemann solver for low Mach numbers , 2016 .

[2]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[3]  Jean-Yves Trépanier,et al.  Discrete form of the GCL for moving meshes and its implementation in CFD schemes , 1993 .

[4]  Zhi Jian Wang,et al.  On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods , 2014, J. Comput. Phys..

[5]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[6]  Rolf Rannacher,et al.  Time-Dependent Problems , 2003 .

[7]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .

[8]  Paul G. Tucker,et al.  Optimising flux reconstruction schemes for Large Eddy Simulation. , 2015 .

[9]  Will Trojak,et al.  Generalised Lebesgue Stable Flux Reconstruction , 2018, 1805.12481.

[10]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[11]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[12]  Paul G. Tucker,et al.  Numerical Investigation of Three-Dimensional Separation in an Axial Flow Compressor: The Influence of Free-Stream Turbulence Intensity and Endwall Boundary Layer State , 2016 .

[13]  Petros Koumoutsakos,et al.  A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers , 2011, J. Comput. Phys..

[14]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[15]  John H. Kolias,et al.  A CONSERVATIVE STAGGERED-GRID CHEBYSHEV MULTIDOMAIN METHOD FOR COMPRESSIBLE FLOWS , 1995 .

[16]  Taku Nonomura,et al.  Stable, non-dissipative, and conservative flux-reconstruction schemes in split forms , 2018, J. Comput. Phys..

[17]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  Brian C. Vermeire,et al.  On the behaviour of fully-discrete flux reconstruction schemes , 2017 .

[20]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[21]  Xin Yuan,et al.  Towards robust unstructured turbomachinery large eddy simulation , 2015 .

[22]  S. A. Orsag,et al.  Small-scale structure of the Taylor-Green vortex , 1984 .

[23]  Antony Jameson,et al.  Erratum to: On the Stability of the Flux Reconstruction Schemes on Quadrilateral Elements for the Linear Advection Equation , 2016, J. Sci. Comput..

[24]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Systems of Conservation Laws: Spectral Collocation Approximations , 1990, SIAM J. Sci. Comput..

[25]  Freddie D. Witherden,et al.  Towards Green Aviation with Python at Petascale , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[26]  E. Krause Eighth international conference on numerical methods in fluid dynamics , 1982 .

[27]  Roddam Narasimha,et al.  Fourteenth International Conference on Numerical Methods in Fluid Dynamics , 1995 .

[28]  Antony Jameson,et al.  On consistency and rate of convergence of Flux Reconstruction for time-dependent problems , 2017, J. Comput. Phys..

[29]  Antony Jameson,et al.  Erratum to: Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra , 2014, J. Sci. Comput..

[30]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[31]  Antony Jameson,et al.  Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra , 2013, Journal of Scientific Computing.

[32]  Richard K. Beatson,et al.  Smooth surface reconstruction from noisy range data , 2003, GRAPHITE '03.

[33]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[34]  S. F. Davis Simplified second-order Godunov-type methods , 1988 .

[35]  Brian C. Vermeire,et al.  On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation , 2016, J. Comput. Phys..

[36]  Eid H. Doha,et al.  Jacobi-Gauss-Lobatto collocation method for the numerical solution of l+l nonlinear Schrödinger equations , 2014, J. Comput. Phys..

[37]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[38]  H. Keller,et al.  Analysis of Numerical Methods , 1967 .

[39]  Z. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids , 2002 .

[40]  Taku Nonomura,et al.  Conservative high-order flux-reconstruction schemes on moving and deforming grids , 2016 .

[41]  Antony Jameson,et al.  Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra , 2014, J. Sci. Comput..

[42]  Taku Nonomura,et al.  Conservative metric evaluation for high-order finite difference schemes with the GCL identities on moving and deforming grids , 2013, J. Comput. Phys..

[43]  Spencer J. Sherwin,et al.  On the Connections Between Discontinuous Galerkin and Flux Reconstruction Schemes: Extension to Curvilinear Meshes , 2016, J. Sci. Comput..

[44]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[45]  Will Trojak,et al.  A new family of weighted one-parameter flux reconstruction schemes , 2018, 1809.07846.

[46]  Robert Michael Kirby,et al.  Filtering in Legendre spectral methods , 2008, Math. Comput..

[47]  Paul G. Tucker,et al.  Temporal Stabilisation of Flux Reconstruction on Linear Problems , 2018, 2018 Fluid Dynamics Conference.

[48]  H. Wendland,et al.  Multivariate interpolation for fluid-structure-interaction problems using radial basis functions , 2001 .

[49]  Graham Pullan,et al.  An Accelerated 3D Navier-Stokes Solver for Flows in Turbomachines , 2009 .

[50]  Paul G. Tucker,et al.  Numerical Investigation of Three-Dimensional Separation in an Axial Flow Compressor , 2016 .

[51]  Victor V. Kotlyar,et al.  Pearcey beams carrying orbital angular momentum , 2015 .

[52]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[53]  Endre Süli,et al.  Post-Processing of Galerkin Methods for Hyperbolic Problems , 2000 .

[54]  Will Trojak,et al.  High-Order Flux Reconstruction on Stretched and Warped Meshes , 2017, AIAA Journal.

[55]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[56]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[57]  Antony Jameson,et al.  Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes , 2008, J. Sci. Comput..

[58]  Taku Nonomura,et al.  On the freestream preservation of high-order conservative flux-reconstruction schemes , 2015, J. Comput. Phys..

[59]  J. Debonis Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods , 2013 .

[60]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[61]  Will Trojak,et al.  Generalised Sobolev Stable Flux Reconstruction , 2018, 1804.04714.

[62]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[63]  Antony Jameson,et al.  On the Stability of the Flux Reconstruction Schemes on Quadrilateral Elements for the Linear Advection Equation , 2016, J. Sci. Comput..

[64]  Freddie D. Witherden,et al.  An extended range of stable-symmetric-conservative Flux Reconstruction correction functions , 2015 .

[65]  Antony Jameson,et al.  On the Non-linear Stability of Flux Reconstruction Schemes , 2012, J. Sci. Comput..

[66]  Antony Jameson,et al.  Insights from von Neumann analysis of high-order flux reconstruction schemes , 2011, J. Comput. Phys..

[67]  JamesonAntony,et al.  On the Stability of the Flux Reconstruction Schemes on Quadrilateral Elements for the Linear Advection Equation , 2016 .

[68]  P. Moin,et al.  A further study of numerical errors in large-eddy simulations , 2003 .

[69]  P. Thomas,et al.  Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .