Relasphone - Mobile and Participative In Situ Forest Biomass Measurements Supporting Satellite Image Mapping

Due to the high cost of traditional forest plot measurements, the availability of up-to-date in situ forest inventory data has been a bottleneck for remote sensing image analysis in support of the important global forest biomass mapping. Capitalizing on the proliferation of smartphones, citizen science is a promising approach to increase spatial and temporal coverages of in situ forest observations in a cost-effective way. Digital cameras can be used as a relascope device to measure basal area, a forest density variable that is closely related to biomass. In this paper, we present the Relasphone mobile application with extensive accuracy assessment in two mixed forest sites from different biomes. Basal area measurements in Finland (boreal zone) were in good agreement with reference forest inventory plot data on pine ( R 2 = 0 . 75 , R M S E = 5 . 33 m 2 /ha), spruce ( R 2 = 0 . 75 , R M S E = 6 . 73 m 2 /ha) and birch ( R 2 = 0 . 71 , R M S E = 4 . 98 m 2 /ha), with total relative R M S E ( % ) = 29 . 66 % . In Durango, Mexico (temperate zone), Relasphone stem volume measurements were best for pine ( R 2 = 0 . 88 , R M S E = 32 . 46 m 3 /ha) and total stem volume ( R 2 = 0 . 87 , R M S E = 35 . 21 m 3 /ha). Relasphone data were then successfully utilized as the only reference data in combination with optical satellite images to produce biomass maps. The Relasphone concept has been validated for future use by citizens in other locations.

[1]  Arun Kumar Pratihast,et al.  Combining Satellite Data and Community-Based Observations for Forest Monitoring , 2014 .

[2]  Krista G. Hilchey,et al.  A review of citizen science and community-based environmental monitoring: issues and opportunities , 2011, Environmental monitoring and assessment.

[3]  M. Nilsson,et al.  Combining national forest inventory field plots and remote sensing data for forest databases , 2008 .

[4]  J Penman,et al.  Integrating remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests , 2014 .

[5]  Christian Wirth,et al.  Predicting biomass of hyperdiverse and structurally complex Central Amazon forests - a virtual approach using extensive field data , 2015 .

[6]  Nicholas C. Coops,et al.  A review of earth observation using mobile personal communication devices , 2013, Comput. Geosci..

[7]  Peter Surový,et al.  Accuracy of Reconstruction of the Tree Stem Surface Using Terrestrial Close-Range Photogrammetry , 2016, Remote. Sens..

[8]  Michael F. Goodchild,et al.  Assuring the quality of volunteered geographic information , 2012 .

[9]  Pablito M. López-Serrano,et al.  Geospatial Estimation of above Ground Forest Biomass in the Sierra Madre Occidental in the State of Durango, Mexico , 2016 .

[10]  Steffen Fritz,et al.  Geo-Wiki: An online platform for improving global land cover , 2012, Environ. Model. Softw..

[11]  Nicholas C. Coops,et al.  Integrating volunteered smartphone data with multispectral remote sensing to estimate forest fuels , 2016, Int. J. Digit. Earth.

[12]  Wazir Zada Khan,et al.  Mobile Phone Sensing Systems: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[13]  Christoph Perger,et al.  Using control data to determine the reliability of volunteered geographic information about land cover , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[14]  A. Comber,et al.  Accurate Attribute Mapping from Volunteered Geographic Information: Issues of Volunteer Quantity and Quality , 2015 .

[15]  W. Bitterlich,et al.  Die Winkelzählprobe , 1952, Forstwissenschaftliches Centralblatt.

[16]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[17]  H. Temesgen,et al.  Allometric Equations for Estimating Tree Aboveground Biomass in Tropical Dipterocarp Forests of Vietnam , 2016 .

[18]  Kaj Andersson,et al.  Automatic tree stem delineation supporting forest inventory , 2011, EOS/ESD Symposium Proceedings.

[19]  R. Sieber Public Participation Geographic Information Systems: A Literature Review and Framework , 2006 .

[20]  Lucy Bastin,et al.  Usability of VGI for validation of land cover maps , 2015, Int. J. Geogr. Inf. Sci..

[21]  Steffen Fritz,et al.  Assessing the Accuracy of Volunteered Geographic Information arising from Multiple Contributors to an Internet Based Collaborative Project , 2013, Trans. GIS.

[22]  M. Goodchild,et al.  Researching Volunteered Geographic Information: Spatial Data, Geographic Research, and New Social Practice , 2012 .

[23]  Martin Herold,et al.  Mobile Devices for Community-Based REDD+ Monitoring: A Case Study for Central Vietnam , 2012, Sensors.

[24]  Deborah Estrin,et al.  Participatory sensing: applications and architecture , 2010, MobiSys '10.

[25]  Hans-Gerd Maas,et al.  Automatic forest inventory parameter determination from terrestrial laser scanner data , 2008 .

[26]  Jon C. Lovett,et al.  Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere's Reserve, Mexico , 2013 .

[27]  David L.B. Jupp,et al.  Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint , 2011 .

[28]  Kaj Andersson,et al.  Social Forest Planning , 2010 .

[29]  David N. Bonter,et al.  Citizen Science as an Ecological Research Tool: Challenges and Benefits , 2010 .

[30]  Felix Morsdorf,et al.  Understory trees in airborne LiDAR data — Selective mapping due to transmission losses and echo-triggering mechanisms , 2012 .

[31]  Steffen Fritz,et al.  Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics , 2015 .

[32]  Steffen Fritz,et al.  Assessing quality of volunteer crowdsourcing contributions: lessons from the Cropland Capture game , 2016, Int. J. Digit. Earth.

[33]  Ilkka Korpela,et al.  Mapping forest plots: an efficient method combining photogrammetry and field triangulation , 2007 .

[34]  Gill Clough,et al.  Geolearners: Location-Based Informal Learning with Mobile and Social Technologies , 2010, IEEE Transactions on Learning Technologies.

[35]  Bin Jiang,et al.  Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information , 2016, ISPRS Int. J. Geo Inf..

[36]  Urs Wegmüller,et al.  Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR , 2015 .

[37]  Miriam J. Metzger,et al.  The credibility of volunteered geographic information , 2008 .

[38]  Kaj Andersson,et al.  Relasphone — Mobile phone and interactive applications to collect ground reference biomass data for satellite image analysis , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[39]  Mikkel Hooge Holck Participatory forest monitoring: an assessment of the accuracy of simple cost–effective methods , 2008, Biodiversity and Conservation.

[40]  Walter Bitterlich,et al.  The relascope idea. Relative measurements in forestry. , 1984 .

[41]  J. Hyyppä,et al.  Tree species classification using airborne LiDAR - effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type , 2010 .

[42]  Steffen Fritz,et al.  Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land Cover , 2009, Remote. Sens..

[43]  Phillips,et al.  Changes in the carbon balance of tropical forests: evidence from long-term plots , 1998, Science.

[44]  E. Næsset Point accuracy of combined pseudorange and carrier phase differential GPS under forest canopy , 1999 .

[45]  Eija Honkavaara,et al.  Variation and directional anisotropy of reflectance at the crown scale — Implications for tree species classification in digital aerial images , 2011 .

[46]  J. Silvertown A new dawn for citizen science. , 2009, Trends in ecology & evolution.

[47]  Juha Hyyppä,et al.  Evaluation of a Smartphone App for Forest Sample Plot Measurements , 2015 .

[48]  Miina Rautiainen,et al.  Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data , 2012 .

[49]  Sean J. Barbeau,et al.  Positional Accuracy of Assisted GPS Data from High-Sensitivity GPS-enabled Mobile Phones , 2011, Journal of Navigation.

[50]  Jan Verbesselt,et al.  Characterizing Forest Change Using Community-Based Monitoring Data and Landsat Time Series , 2016, PloS one.

[51]  Matthieu Molinier,et al.  Participative forest in-situ measurements for biomass mapping in satellite images over Durango State, Mexico , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[52]  Christian Wirth,et al.  Predicting biomass of hyperdiverse and structurally complex Central Amazon forests - a virtual approach using extensive field data , 2015 .

[53]  C. Woodcock,et al.  Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar , 2011 .

[54]  Oleg Antropov,et al.  Improved Mapping of Tropical Forests With Optical and SAR Imagery, Part II: Above Ground Biomass Estimation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[55]  P. Gong,et al.  Automated methods for measuring DBH and tree heights with a commercial scanning lidar , 2011 .

[56]  G. Dedieu,et al.  SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum , 1994 .

[57]  Rohan Fisher,et al.  Tropical forest monitoring, combining satellite and social data, to inform management and livelihood implications: Case studies from Indonesian West Timor , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[58]  Yadvinder Malhi,et al.  Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates. , 2013, Ecological applications : a publication of the Ecological Society of America.

[59]  R. Valbuena,et al.  Accuracy and precision of GPS receivers under forest canopies in a mountainous environment. , 2010 .

[60]  Kaj Andersson,et al.  AVHRR-Based Forest Proportion Map of the Pan-European Area. , 2001 .

[61]  Giles M. Foody,et al.  Using Volunteered Data in Land Cover Map Validation: Mapping West African Forests , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[62]  Amr H. Abd-Elrahman,et al.  A community-based urban forest inventory using online mapping services and consumer-grade digital images , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[63]  Deborah Estrin,et al.  Internet Predictions , 2010, IEEE Internet Comput..

[64]  C. Gleason,et al.  A Review of Remote Sensing of Forest Biomass and Biofuel: Options for Small-Area Applications , 2011 .

[65]  Carl F. Salk,et al.  Comparing the Quality of Crowdsourced Data Contributed by Expert and Non-Experts , 2013, PloS one.

[66]  Christian Heipke,et al.  Crowdsourcing geospatial data , 2010 .

[67]  Arun Kumar Pratihast,et al.  Linking community-based and national REDD+ monitoring: a review of the potential , 2013 .

[68]  Daniel L. Schmoldt,et al.  A Review of Past Research on Dendrometers , 2000, Forest Science.

[69]  Ariel E. Lugo,et al.  Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data , 1989, Forest Science.

[70]  Alan H. Strahler,et al.  Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna®) , 2008 .

[71]  M. Goodchild Citizens as sensors: the world of volunteered geography , 2007 .

[72]  A. Cajander,et al.  Forest types and their significance. , 1949 .

[73]  Miina Rautiainen,et al.  Seasonal reflectance dynamics of common understory types in a northern European boreal forest , 2011 .

[74]  Annika Kangas,et al.  Evaluation of the Laser-relascope , 2005 .