An Interface Engineered Multicolor Photodetector Based on n‐Si(111)/TiO2 Nanorod Array Heterojunction

A multicolor photodetector based on the heterojunction of n‐Si(111)/TiO2 nanorod arrays responding to both ultraviolet (UV) and visible light is developed by utilizing interface engineering. The photodetector is fabricated via a consecutive process including chemical etching, magnetron sputtering, hydrothermal growth, and assembling. Under a small reverse bias (from 0 to ≈−2 V), only the photogenerated electrons in TiO2 are possible to tunnel through the low barrier of ΔEC, and the device only responses to UV light; as the reverse bias increases, the photogenerated holes in Si also begin to tunnel through the high barrier of ΔEV. As a result, the device is demonstrated to have the capacity to detect both UV and visible lights, which is useful in the fields of rapid detection and multicolor imaging. It has been also observed that the crystal orientation of Si affects the characteristics of bias‐controlled spectral response of the n‐Si/TiO2 heterojunctions.

[1]  W. Jaegermann,et al.  Improved photocatalytic activity in RuO2-ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects. , 2015, Physical chemistry chemical physics : PCCP.

[2]  H. García,et al.  p-n Heterojunction of doped graphene films obtained by pyrolysis of biomass precursors. , 2015, Small.

[3]  Qian Liu,et al.  High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts. , 2014, Small.

[4]  Jiangwei Liu,et al.  Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS‐ZnO Heterostructure Nanofilms , 2014, Advanced materials.

[5]  L. Sang,et al.  A Multilevel Intermediate‐Band Solar Cell by InGaN/GaN Quantum Dots with a Strain‐Modulated Structure , 2014, Advanced materials.

[6]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[7]  Meiyong Liao,et al.  Arbitrary Multicolor Photodetection by Hetero-integrated Semiconductor Nanostructures , 2013, Scientific Reports.

[8]  Joel Jean,et al.  ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells , 2013, Advanced materials.

[9]  Liangmo Mei,et al.  A self-powered UV photodetector based on TiO2 nanorod arrays , 2013, Nanoscale Research Letters.

[10]  Qingfeng Dong,et al.  A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. , 2012, Nature nanotechnology.

[11]  Min Chen,et al.  Stacking‐Order‐Dependent Optoelectronic Properties of Bilayer Nanofilm Photodetectors Made From Hollow ZnS and ZnO Microspheres , 2012, Advanced materials.

[12]  C. Zhi,et al.  ZnO Hollow Spheres with Double‐Yolk Egg Structure for High‐Performance Photocatalysts and Photodetectors , 2012, Advanced materials.

[13]  S. Li,et al.  Solution‐Processable Pyrite FeS2 Nanocrystals for the Fabrication of Heterojunction Photodiodes with Visible to NIR Photodetection , 2012, Advanced materials.

[14]  Jun Zhang,et al.  Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, Franz-Keldysh, and Stark effects. , 2012, Nano letters.

[15]  Xingao Gong,et al.  An Optimized Ultraviolet‐A Light Photodetector with Wide‐Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt , 2012, Advanced materials.

[16]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[17]  Meiyong Liao,et al.  High-temperature ultraviolet detection based on InGaN Schottky photodiodes , 2011 .

[18]  Meiyong Liao,et al.  High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator , 2011 .

[19]  Tianyou Zhai,et al.  Ultrahigh‐Performance Solar‐Blind Photodetectors Based on Individual Single‐crystalline In2Ge2O7 Nanobelts , 2010, Advanced materials.

[20]  Meiyong Liao,et al.  Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire , 2010 .

[21]  Y. Bando,et al.  Electrical Transport and High‐Performance Photoconductivity in Individual ZrS2 Nanobelts , 2010, Advanced materials.

[22]  Y. Bando,et al.  Single‐Crystalline CdS Nanobelts for Excellent Field‐Emitters and Ultrahigh Quantum‐Efficiency Photodetectors , 2010, Advanced materials.

[23]  M. Lee,et al.  Inverted Al0.25Ga0.75N/GaN ultraviolet p-i-n photodiodes formed on p-GaN template layer grown by metalorganic vapor phase epitaxy , 2010 .

[24]  M. Bruns,et al.  Bandgap determination and charge separation in Ag@TiO2 core shell nanoparticle films , 2010 .

[25]  J. Moon,et al.  High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm , 2009, Science.

[26]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[27]  Zhong Lin Wang,et al.  Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. , 2009, Applied physics letters.

[28]  M. L. Lee,et al.  Photodetectors formed by an indium tin oxide/zinc oxide/p-type gallium nitride heterojunction with high ultraviolet-to-visible rejection ratio , 2009 .

[29]  Todd C. Monson,et al.  Photocurrent Enhancement in Polythiophene‐ and Alkanethiol‐Modified ZnO Solar Cells , 2008 .

[30]  J. Zúñiga-Pérez,et al.  Valence band offset of the ZnO/AlN heterojunction determined by x-ray photoemission spectroscopy , 2008 .

[31]  Dongxu Zhao,et al.  Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction , 2008 .

[32]  Bozhi Tian,et al.  Single and tandem axial p-i-n nanowire photovoltaic devices. , 2008, Nano letters.

[33]  Manijeh Razeghi,et al.  Performance enhancement of GaN ultraviolet avalanche photodiodes with p-type δ-doping , 2008 .

[34]  M. Gustafsson,et al.  Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy , 2008, Science.

[35]  U. Schubert,et al.  Highly Dispersed Mixed Zirconia and Hafnia Nanoparticles in a Silica Matrix: First Example of a ZrO2–HfO2–SiO2 Ternary Oxide System , 2007 .

[36]  Xiangyang Ma,et al.  Ultraviolet electroluminescence from ZnO/p-Si heterojunctions , 2007 .

[37]  Federico Capasso,et al.  Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. , 2006, Nano letters.

[38]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[39]  Gérard Destefanis,et al.  Third generation and multicolor IRFPA developments: a unique approach based on DEFIR (Invited Paper) , 2005, SPIE Defense + Commercial Sensing.

[40]  S. Bourgeois,et al.  Initial stages of TiO2 thin films MOCVD growth studied by in situ surface analyses , 2005 .

[41]  James L. Gole,et al.  Defect‐Related Optical Behavior in Surface Modified TiO2 Nanostructures , 2005 .

[42]  J. Sheu,et al.  Reduction of dark current in AlGaN-GaN Schottky-barrier photodetectors with a low-temperature-grown GaN cap layer , 2004, IEEE Electron Device Letters.

[43]  A. Cimatti,et al.  The K20 survey. VI. The distribution of the stellar masses in galaxies up to z 2 , 2004, astro-ph/0405055.

[44]  Hongen Shen,et al.  ZnO Schottky ultraviolet photodetectors , 2001 .

[45]  Kai Simons,et al.  Multicolour imaging of post-Golgi sorting and trafficking in live cells , 2001, Nature Cell Biology.

[46]  U. Jansson,et al.  Initial stages of growth during CVD of W on TiSi2 substrates , 1995 .

[47]  S. Wu,et al.  Photoelectron spectroscopy of metal oxide particles: size and support effects , 1994 .

[48]  D. Haneman Surfaces of silicon , 1987 .

[49]  R. W. Linton,et al.  X-ray photoelectron spectroscopy of thermally treated silica (SiO2) surfaces , 1985 .

[50]  E. A. Kraut,et al.  Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .

[51]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.