Evidence for Unstable Periodic Orbits in Intact Swimming Lampreys, Isolated Spinal Cords, and Intermediate Preparations a

[1]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[2]  E. Kostelich,et al.  Characterization of an experimental strange attractor by periodic orbits. , 1989, Physical review. A, General physics.

[3]  Ditto,et al.  Experimental control of chaos. , 1990, Physical review letters.

[4]  P. Cvitanović,et al.  Periodic orbits as the skeleton classical and quantum chaos , 1991 .

[5]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[6]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[7]  D. T. Kaplan,et al.  Exceptional events as evidence for determinism , 1994 .

[8]  James Theiler,et al.  On the evidence for how-dimensional chaos in an epileptic electroencephalogram , 1995 .

[9]  Jürgen Kurths,et al.  Strange non-chaotic attractor in a quasiperiodically forced circle map , 1995 .

[10]  Ditto,et al.  Evidence for determinism in ventricular fibrillation. , 1995, Physical review letters.

[11]  Grebogi,et al.  Detecting unstable periodic orbits in chaotic experimental data. , 1996, Physical review letters.

[12]  M. Pascual Understanding nonlinear dynamics , 1996 .

[13]  Frank Moss,et al.  Detecting Low Dimensional Dynamics in Biological Experiments , 1996, Int. J. Neural Syst..

[14]  Mikhail M. Sushchik,et al.  The effect of natural frequency distribution on cluster synchronization in oscillator arrays , 1997 .

[15]  Celso Grebogi,et al.  Extracting unstable periodic orbits from chaotic time series data , 1997 .

[16]  Mikhail I. Rabinovich,et al.  Self-regularization of chaos in neural systems: experimental and theoretical results , 1997 .

[17]  Grigory V. Osipov,et al.  PHASE SYNCHRONIZATION EFFECTS IN A LATTICE OF NONIDENTICAL ROSSLER OSCILLATORS , 1997 .