SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds

We present for the first time to the best of our knowledge a systematic study of lifetime and damage of semiconductor saturable absorber mirrors (SESAMs) designed for operation in high-power oscillators. We characterize and compare nonlinear reflectivity and inverse saturable absorption (ISA) parameters as well as damage threshold and lifetime of different representative SESAMs under test using a nonlinear reflectivity measurement setup at unprecedented high fluence levels. We investigate the catastrophic damage that occurs at very high fluences by demonstrating a dependence of the damage threshold on the ISA parameter F2 and the maximum reflectivity fluence F0. We can clearly demonstrate that the damage fluence Fd scales proportionally to √F2 for all SESAMs. In the case of SESAMs with the same absorber where the product Fsat .ΔR is constant, the damage fluence Fd scales proportionally to F0. Therefore, damage occurs due to heating of the lattice by the energy absorbed due to the ISA process and is not related to the quantum well (QW) absorbers. Furthermore, we present guidelines on how to design samples with high saturation fluences, reduced induced absorption, and high damage thresholds. Using multiple QWs and a suitable di-electric topsection, we achieved SESAMs with saturation fluences >;200 μj/cm2, nonsaturable losses <;0.1%, and reduced ISA. Our best sample could not be damaged at a maximum available fluence of 0.21 J/cm2 and a peak intensity of 370 GW/cm2. These SESAMs will be suitable for future high-power femtosecond oscillators in the kilowatt average output power regime, which is very interesting for attosecond science and industrial material processing applications.

[1]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[2]  Ursula Keller,et al.  Passively modelocked surface-emitting semiconductor lasers , 2006 .

[3]  E. W. Stryland,et al.  Energy band-gap dependence of two-photon absorption. , 1985, Optics letters.

[4]  M. Golling,et al.  MIXSELs - a new class of ultrafast semiconductor lasers , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[5]  Rüdiger Paschotta,et al.  Compact Nd : YVO4 Lasers With Pulse Repetition Rates up to 160 GHz , 2001 .

[6]  L. A. Lompré,et al.  Multiple-harmonic conversion of 1064 nm radiation in rare gases , 1988 .

[7]  Samuli Kivistö,et al.  Carbon nanotube films for ultrafast broadband technology. , 2009, Optics express.

[8]  K. Petermann,et al.  Femtosecond Yb:Lu(2)O(3) thin disk laser with 63 W of average power. , 2009, Optics letters.

[9]  U. Keller,et al.  Optical nonlinearity in low-temperature-grown GaAs: Microscopic limitations and optimization strategies , 1999 .

[10]  V. Magni,et al.  Multielement stable resonators containing a variable lens , 1987 .

[11]  Günter Steinmeyer,et al.  Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1μm , 2008 .

[12]  T. Südmeyer,et al.  60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser. , 2003, Optics letters.

[13]  K. Kikuchi,et al.  Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. , 2007, Optics letters.

[14]  Ursula Keller,et al.  Soliton mode-locking with saturable absorbers , 1996 .

[15]  Sascha Weiler,et al.  Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. , 2008, Optics express.

[16]  Erich P. Ippen,et al.  High fluence ultrafast dynamics of semiconductor saturable absorber mirrors , 1999 .

[17]  Erich P. Ippen,et al.  Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption , 2000 .

[18]  T. Südmeyer,et al.  High precision optical characterization of semiconductor saturable absorber mirrors (SESAMs) , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[19]  F. Benabid,et al.  High harmonic generation in a gas-filled hollow-core photonic crystal fiber , 2009 .

[20]  M. Golling,et al.  Vertical integration of ultrafast semiconductor lasers , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[21]  Charles K. Rhodes,et al.  Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases , 1987 .

[22]  Rüdiger Paschotta,et al.  Passive mode locking with slow saturable absorbers , 2001 .

[23]  T. Südmeyer,et al.  Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. , 2008, Optics express.

[24]  P. Ajayan,et al.  Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm , 2002 .

[25]  Matthias Golling,et al.  Femtosecond thin-disk laser with 141 W of average power. , 2010, Optics letters.

[26]  U. Keller,et al.  Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers , 1995 .

[27]  Rüdiger Paschotta,et al.  Q-switching stability limits of continuous-wave passive mode locking , 1999 .

[28]  F. Kärtner,et al.  Experimental verification of soliton mode locking using only a slow saturable absorber. , 1995, Optics letters.

[29]  Ursula Keller,et al.  Optical characterization of semiconductor saturable absorbers , 2004 .

[30]  D. Miller,et al.  Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. , 1992, Optics letters.

[31]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[32]  U. Keller,et al.  60-fs pulses from a diode-pumped Nd:glass laser. , 1997, Optics letters.

[33]  N. S. Barnett,et al.  Private communication , 1969 .

[34]  A. Giesen,et al.  Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Rüdiger Paschotta,et al.  Compact Nd:YVO/sub 4/ lasers with pulse repetition rates up to 160 GHz , 2002 .

[36]  K. Weingarten,et al.  Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate , 2010 .

[37]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[38]  Ursula Keller,et al.  Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight , 2010 .

[39]  U Keller,et al.  Growth parameter optimization for fast quantum dot SESAMs. , 2008, Optics express.

[40]  Ursula Keller,et al.  Femtosecond laser oscillators for high-field science , 2008 .

[41]  U. Keller,et al.  New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers , 2005 .

[42]  K. Weingarten,et al.  Semiconductor saturable absorber mirror structures with low saturation fluence , 2005 .

[43]  U. Keller From femtosecond to attosecond optics , 2010, 2009 IEEE LEOS Annual Meeting Conference Proceedings.

[44]  K. Weingarten,et al.  100 GHz passively mode-locked Er:Yb:glass laser at 1.5 microm with 1.6-ps pulses. , 2008, Optics express.