SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds
暂无分享,去创建一个
M. Golling | M. Mangold | U. Keller | C. J. Saraceno | M. Hoffmann | C. Schriber | M. Hoffmann | C. Saraceno | T. Südmeyer | U. Keller | M. Golling | M. Mangold | C. Schriber | O. Heckl | C. Baer | T. Südmeyer | O. H. Heckl | C. R. Baer
[1] U. Keller. Recent developments in compact ultrafast lasers , 2003, Nature.
[2] Ursula Keller,et al. Passively modelocked surface-emitting semiconductor lasers , 2006 .
[3] E. W. Stryland,et al. Energy band-gap dependence of two-photon absorption. , 1985, Optics letters.
[4] M. Golling,et al. MIXSELs - a new class of ultrafast semiconductor lasers , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.
[5] Rüdiger Paschotta,et al. Compact Nd : YVO4 Lasers With Pulse Repetition Rates up to 160 GHz , 2001 .
[6] L. A. Lompré,et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases , 1988 .
[7] Samuli Kivistö,et al. Carbon nanotube films for ultrafast broadband technology. , 2009, Optics express.
[8] K. Petermann,et al. Femtosecond Yb:Lu(2)O(3) thin disk laser with 63 W of average power. , 2009, Optics letters.
[9] U. Keller,et al. Optical nonlinearity in low-temperature-grown GaAs: Microscopic limitations and optimization strategies , 1999 .
[10] V. Magni,et al. Multielement stable resonators containing a variable lens , 1987 .
[11] Günter Steinmeyer,et al. Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1μm , 2008 .
[12] T. Südmeyer,et al. 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser. , 2003, Optics letters.
[13] K. Kikuchi,et al. Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. , 2007, Optics letters.
[14] Ursula Keller,et al. Soliton mode-locking with saturable absorbers , 1996 .
[15] Sascha Weiler,et al. Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. , 2008, Optics express.
[16] Erich P. Ippen,et al. High fluence ultrafast dynamics of semiconductor saturable absorber mirrors , 1999 .
[17] Erich P. Ippen,et al. Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption , 2000 .
[18] T. Südmeyer,et al. High precision optical characterization of semiconductor saturable absorber mirrors (SESAMs) , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.
[19] F. Benabid,et al. High harmonic generation in a gas-filled hollow-core photonic crystal fiber , 2009 .
[20] M. Golling,et al. Vertical integration of ultrafast semiconductor lasers , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.
[21] Charles K. Rhodes,et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases , 1987 .
[22] Rüdiger Paschotta,et al. Passive mode locking with slow saturable absorbers , 2001 .
[23] T. Südmeyer,et al. Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. , 2008, Optics express.
[24] P. Ajayan,et al. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm , 2002 .
[25] Matthias Golling,et al. Femtosecond thin-disk laser with 141 W of average power. , 2010, Optics letters.
[26] U. Keller,et al. Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers , 1995 .
[27] Rüdiger Paschotta,et al. Q-switching stability limits of continuous-wave passive mode locking , 1999 .
[28] F. Kärtner,et al. Experimental verification of soliton mode locking using only a slow saturable absorber. , 1995, Optics letters.
[29] Ursula Keller,et al. Optical characterization of semiconductor saturable absorbers , 2004 .
[30] D. Miller,et al. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. , 1992, Optics letters.
[31] Adolf Giesen,et al. Scalable concept for diode-pumped high-power solid-state lasers , 1994 .
[32] U. Keller,et al. 60-fs pulses from a diode-pumped Nd:glass laser. , 1997, Optics letters.
[33] N. S. Barnett,et al. Private communication , 1969 .
[34] A. Giesen,et al. Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws , 2007, IEEE Journal of Selected Topics in Quantum Electronics.
[35] Rüdiger Paschotta,et al. Compact Nd:YVO/sub 4/ lasers with pulse repetition rates up to 160 GHz , 2002 .
[36] K. Weingarten,et al. Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate , 2010 .
[37] F. Kärtner,et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .
[38] Ursula Keller,et al. Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight , 2010 .
[39] U Keller,et al. Growth parameter optimization for fast quantum dot SESAMs. , 2008, Optics express.
[40] Ursula Keller,et al. Femtosecond laser oscillators for high-field science , 2008 .
[41] U. Keller,et al. New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers , 2005 .
[42] K. Weingarten,et al. Semiconductor saturable absorber mirror structures with low saturation fluence , 2005 .
[43] U. Keller. From femtosecond to attosecond optics , 2010, 2009 IEEE LEOS Annual Meeting Conference Proceedings.
[44] K. Weingarten,et al. 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 microm with 1.6-ps pulses. , 2008, Optics express.