Phonon scattering dominated electron transport in twisted bilayer graphene

[1]  G. Vignale,et al.  Gauge-phonon dominated resistivity in twisted bilayer graphene near magic angle , 2019, Physical Review B.

[2]  S. Sarma,et al.  Phonon-induced giant linear-in- T resistivity in magic angle twisted bilayer graphene: Ordinary strangeness and exotic superconductivity , 2018, Physical Review B.

[3]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[4]  B. Bernevig,et al.  Twisted Bilayer Graphene: A Phonon-Driven Superconductor. , 2018, Physical review letters.

[5]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[6]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[7]  H. Choi,et al.  Strong electron-phonon coupling, electron-hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene , 2018, Physical Review B.

[8]  K. Novoselov,et al.  Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering , 2018, Nature Physics.

[9]  I. Martin,et al.  Theory of Phonon-Mediated Superconductivity in Twisted Bilayer Graphene. , 2018, Physical review letters.

[10]  Yong P. Chen,et al.  Transport measurements in twisted bilayer graphene: Electron-phonon coupling and Landau level crossing , 2018, Physical Review B.

[11]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[12]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[13]  T. Taniguchi,et al.  Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level , 2016, Nature.

[14]  M. Koshino,et al.  Lattice relaxation and energy band modulation in twisted bilayer graphene , 2017, 1706.03908.

[15]  S. Larentis,et al.  Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene , 2017, Proceedings of the National Academy of Sciences.

[16]  E. Kaxiras,et al.  Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene. , 2016, Physical review letters.

[17]  Kenji Watanabe,et al.  Charge Inversion and Topological Phase Transition at a Twist Angle Induced van Hove Singularity of Bilayer Graphene. , 2016, Nano letters.

[18]  S. Banerjee,et al.  van der Waals Heterostructures with High Accuracy Rotational Alignment. , 2016, Nano letters.

[19]  L. Gor’kov Phonon mechanism in the most dilute superconductor n-type SrTiO3 , 2015, Proceedings of the National Academy of Sciences.

[20]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[21]  A. P. Mackenzie,et al.  Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.

[22]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[23]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[24]  P. Vargas,et al.  Flat bands in slightly twisted bilayer graphene: Tight-binding calculations , 2010, 1012.4320.

[25]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[26]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[27]  S. Sarma,et al.  Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene , 2007, 0711.0754.

[28]  Tanmoy Das,et al.  Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.

[29]  J. Zaanen Superconductivity: Why the temperature is high , 2004, Nature.

[30]  C. Poole,et al.  Handbook of Superconductivity , 1999 .

[31]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[32]  V. J. Emery,et al.  Superconductivity in bad metals. , 1995, Physical review letters.

[33]  West,et al.  Observation of a Bloch-Grüneisen regime in two-dimensional electron transport. , 1990, Physical review. B, Condensed matter.

[34]  Physical Review Letters 63 , 1989 .

[35]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[36]  K. Komatsu Interpretation of the specific heat of various graphites at very low temperatures , 1964 .

[37]  E. Grüneisen Die Abhängigkeit des elektrischen Widerstandes reiner Metalle von der Temperatur , 1933 .

[38]  F. Bloch Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen , 1930 .