High-rate and high-capacity measurement-device-independent quantum key distribution with Fibonacci matrix coding in free space

This paper proposes a high-rate and high-capacity measurement-device-independent quantum key distribution (MDI-QKD) protocol with Fibonacci-valued and Lucas-valued orbital angular momentum (OAM) entangled states in free space. In the existing MDI-OAM-QKD protocols, the main encoding algorithm handles encoded numbers in a bit-by-bit manner. To design a fast encoding algorithm, we introduce a Fibonacci matrix coding algorithm, by which, encoded numbers are separated into segments longer than one bit. By doing so, when compared to the existing MDI-OAM-QKD protocols, the new protocol can effectively increase the key rate and the coding capacity. This is because Fibonacci sequences are used in preparing OAM entangled states, reducing the misattribution errors (which slow down the execution cycle of the entire QKD) in QKD protocols. Moreover, our protocol keeps the data blocks as small as possible, so as to have more blocks in a given time interval. Most importantly, our proposed protocol can distill multiple Fibonacci key matrices from the same block of data, thus reducing the statistical fluctuations in the sample and increasing the final QKD rate. Last but not the least, the sender and the receiver can omit classical information exchange and bit flipping in the secure key distillation stage.

[1]  Robert W Boyd,et al.  Influence of atmospheric turbulence on states of light carrying orbital angular momentum. , 2012, Optics letters.

[2]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2015, Nature Photonics.

[3]  D. Simon,et al.  High-capacity quantum Fibonacci coding for key distribution , 2013 .

[4]  F. Spedalieri Quantum key distribution without reference frame alignment: Exploiting photon orbital angular momentum , 2004, quant-ph/0409057.

[5]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[6]  N. Imoto,et al.  Quantum cryptography with coherent states , 1995, Technical Digest. CLEO/Pacific Rim'95. The Pacific Rim Conference on Lasers and Electro-Optics.

[7]  Mehmet A. Orgun,et al.  An efficient quantum blind digital signature scheme , 2017, Science China Information Sciences.

[8]  Zhen Zhang,et al.  Field Test of Measurement-Device-Independent Quantum Key Distribution , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  王川,et al.  Six-State Quantum Key Distribution Using Photons with Orbital Angular Momentum , 2010 .

[10]  Dong Chen,et al.  Measurement-device-independent quantum key distribution with pairs of vector vortex beams , 2016 .

[11]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[12]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[13]  Cong Jiang,et al.  Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation , 2017, 1710.08211.

[14]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[15]  赵生妹,et al.  Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum , 2015 .

[16]  Chun-Mei Zhang,et al.  Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012 .

[17]  R. Boyd,et al.  Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. , 2012, Optics express.

[18]  S. Goyal,et al.  Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases , 2013, 1402.5810.

[19]  T. Aaron Gulliver,et al.  A new class of Fibonacci sequence based error correcting codes , 2017, Cryptography and Communications.

[20]  H. Lo,et al.  Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw , 2011, 1111.3413.

[21]  Mehmet A. Orgun,et al.  An improved coding method of quantum key distribution protocols based on Fibonacci-valued OAM entangled states , 2017 .

[22]  Xiongfeng Ma,et al.  Alternative schemes for measurement-device-independent quantum key distribution , 2012, 1204.4856.

[23]  Chengyu Fan,et al.  Effect of atmospheric turbulence on entangled orbital angular momentum three-qubit state , 2017 .

[24]  Z. Sodnik,et al.  Free-space quantum key distribution over 144 km , 2006, SPIE Security + Defence.

[25]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[26]  Qin Wang,et al.  Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution , 2017 .

[27]  Wanyi Gu,et al.  Continuous-variable measurement-device-independent quantum key distribution using squeezed states , 2014, 1406.0973.

[28]  Xiongfeng Ma,et al.  Statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012, 1210.3929.

[29]  Chunqing Gao,et al.  Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams , 2016 .

[30]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[31]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[32]  Shengmei Zhao,et al.  A Large-alphabet Quantum Key Distribution Protocol Using Orbital Angular Momentum Entanglement , 2012, 1205.0851.

[33]  T. F. D. Silva,et al.  Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits , 2012, 1207.6345.

[34]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[35]  Mario Krenn,et al.  Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Wang Chuan,et al.  Six-State Quantum Key Distribution Using Photons with Orbital Angular Momentum , 2010 .

[37]  Sheng Yubo,et al.  A Large-alphabet Quantum Key Distribution Protocol Using Orbital Angular Momentum Entanglement , 2013 .

[38]  Xuyang Wang,et al.  Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers , 2019, Physical Review A.

[39]  Antonio Jurado-Navas,et al.  850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes. , 2015, Optics express.

[40]  Minghui Hong,et al.  Orbital Angular Momentum Multiplexing and Demultiplexing by a Single Metasurface , 2017 .

[41]  S. Vajda Fibonacci and Lucas Numbers and the Golden Section , 1989 .

[42]  A. Willner,et al.  Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. , 2013, Optics letters.