A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems

Dynamic holographic three-dimensional (3-D) display, which features reconstructing 3-D images with full depth cues has great potential in various fields such as medical, and military industries obtained a broad attention in the last decades. Combing parallel computation techniques, hologram synthesis algorithms are capable of calculating diffraction and interference pattern dynamically or even in real-time manner. In addition, the development of various types of optical modulators including liquid crystal (LC)-based, opto-acoustic-typed, digital micromirror devices (DMDs), and opto-opto materials made it possible that device can load and display such holographic patterns dynamically. In accordance with the progress of algorithms and modulators, we can expect that dynamic holographic 3-D display will be able to reconstruct 3-D images with real-time refresh rate, full color, wide viewing angle, and large image size, and the system will be commercialized in a near future.

[1]  A. Schwerdtner,et al.  Large holographic 3D displays for tomorrow’s TV and monitors - solutions, challenges, and prospects , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[2]  Pierre St-Hilaire Scalable optical architecture for electronic holography , 1995 .

[3]  P. St-Hilaire Advances In Holographic Video , 1994, IEEE Princeton/Central Jersey Sarnoff Symposium,.

[4]  Yongtian Wang,et al.  3D dynamic holographic display by modulating complex amplitude experimentally. , 2013, Optics express.

[5]  L. A. González,et al.  Pixelated phase computer holograms for the accurate encoding of scalar complex fields. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Yongtian Wang,et al.  Fast polygon-based method for calculating computer-generated holograms in three-dimensional display. , 2013, Applied optics.

[7]  Enrico Zschau,et al.  Generation, encoding, and presentation of content on holographic displays in real time , 2010, Defense + Commercial Sensing.

[8]  Peng Wang,et al.  Photorefractive Polymers for Updatable Holographic Displays , 2010 .

[9]  Mark E. Lucente,et al.  Scaling up the MIT holographic video system , 1995, Other Conferences.

[10]  P. Blanche,et al.  Holographic three-dimensional telepresence using large-area photorefractive polymer , 2010, Nature.

[11]  Walter M. Duncan,et al.  Emerging digital micromirror device (DMD) applications , 2003, SPIE MOEMS-MEMS.

[12]  Hiroshi Yoshikawa,et al.  Fast Computation of Fresnel Holograms Employing Difference , 2000, Electronic Imaging.

[13]  Huadong Zheng,et al.  Fraunhofer computer-generated hologram for diffused 3D scene in Fresnel region. , 2011, Optics letters.

[14]  P. Blanche,et al.  An updatable holographic three-dimensional display , 2008, Nature.

[15]  Wataru Sakai,et al.  Real-time three-dimensional holographic display using a monolithic organic compound dispersed film , 2012 .

[16]  K. Yamamoto,et al.  Viewing-Zone-Angle-Expanded Color Electronic Holography System Using Ultra-High-Definition Liquid Crystal Displays With Undesirable Light Elimination , 2011, Journal of Display Technology.

[17]  Levent Onural,et al.  Digital Holographic Three-Dimensional Video Displays , 2011, Proceedings of the IEEE.

[18]  Timothy D. Wilkinson,et al.  Optically addressed spatial light modulator: performance and applications , 2003, SPIE Optics + Photonics.

[19]  J. M. de Bougrenet de la Tocnaye,et al.  Complex amplitude modulation by use of liquid-crystal spatial light modulators. , 1997, Applied optics.

[20]  Toyohiko Yatagai,et al.  360° reconstruction of a 3D object using cylindrical computer generated holography. , 2011, Applied optics.

[21]  Yuji Sakamoto,et al.  Computer generated cylindrical hologram , 2005, SPIE OPTO.

[22]  John Watson,et al.  Computer generated holograms from three dimensional meshes using an analytic light transport model. , 2008, Applied optics.

[23]  Yuji Sakamoto,et al.  A fast calculation method of cylindrical computer-generated holograms which perform image-reconstruction of volume data , 2007 .

[24]  Yasuyuki Ichihashi,et al.  HORN-6 special-purpose clustered computing system for electroholography. , 2009, Optics express.

[25]  Yongtian Wang,et al.  Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation. , 2014, Applied optics.

[26]  Takanori Senoh,et al.  Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms. , 2012, Optics express.

[27]  Mark E. Lucente,et al.  Interactive computation of holograms using a look-up table , 1993, J. Electronic Imaging.

[28]  Toyohiko Yatagai,et al.  Fast calculation method for cylindrical computer-generated holograms. , 2005, Optics express.

[29]  Wataru Sakai,et al.  Quickly updatable hologram images with high performance photorefractive polymer composites , 2012, Other Conferences.

[30]  Takanori Senoh,et al.  Real-time color holography system for live scene using 4K2K video system , 2010, OPTO.

[31]  A. Atalar,et al.  New high-resolution display device for holographic three-dimensional video: principles and simulations , 1994 .

[32]  Daniel E. Smalley,et al.  Holographic video display based on guided-wave acousto-optic devices , 2007, SPIE OPTO.

[33]  R. Häussler,et al.  Large holographic displays as an alternative to stereoscopic displays , 2008, Electronic Imaging.

[34]  Andrew P. Wood,et al.  3D electronic holography display system using a 100-megapixel spatial light modulator , 2004, SPIE Optical Systems Design.

[35]  Chris Slinger,et al.  Computer-generated holography as a generic display technology , 2005, Computer.

[36]  Philippe Fuchs,et al.  Visual Fatigue Reduction for Immersive Stereoscopic Displays by Disparity, Content, and Focus-Point Adapted Blur , 2012, IEEE Transactions on Industrial Electronics.

[37]  Eun-Soo Kim,et al.  Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms. , 2012, Optics express.

[38]  Levent Onural,et al.  A Survey of Signal Processing Problems and Tools in Holographic Three-Dimensional Television , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[39]  Toyohiko Yatagai,et al.  Fast calculation of spherical computer generated hologram using spherical wave spectrum method. , 2013, Optics express.

[40]  Toyohiko Yatagai,et al.  Fast calculation method for computer-generated cylindrical hologram based on wave propagation in spectral domain. , 2010, Optics express.

[41]  William P. Bleha,et al.  Advances in Liquid Crystal on Silicon (LCOS) spatial light modulator technology , 2013, Defense, Security, and Sensing.

[42]  Christopher W. Slinger,et al.  Optically addressed spatial light modulators for replaying computer-generated holograms , 2001, SPIE Optics + Photonics.

[43]  Gerald Fütterer,et al.  Full-color interactive holographic projection system for large 3D scene reconstruction , 2008, SPIE OPTO.

[44]  Hiroshi Yoshikawa,et al.  Fast calculation method for computer-generated cylindrical holograms. , 2008, Applied optics.

[45]  Peter Tsang,et al.  Holographic video at 40 frames per second for 4-million object points. , 2011, Optics express.

[46]  Takanori Senoh,et al.  Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography , 2014, Scientific reports.

[47]  Christopher W. Slinger,et al.  Progress and prospects for practical electroholographic display systems , 2001, IS&T/SPIE Electronic Imaging.

[48]  Yohan Park,et al.  Phase-regularized polygon computer-generated holograms. , 2014, Optics letters.

[49]  V. Michael Bove,et al.  Making Holographic Television a Consumer Product , 2007 .

[50]  Toyohiko Yatagai,et al.  Fast calculation method for computer-generated cylindrical holograms based on the three-dimensional Fourier spectrum. , 2013, Optics letters.

[51]  H. Yoshikawa,et al.  Fast calculation method for computer-generated cylindrical holograms. , 2008, Applied optics.

[52]  Pierre St. Hilaire Scalable Optical Architectures for Electronic Holography. , 1994 .

[53]  Toyohiko Yatagai,et al.  Fast calculation method for spherical computer-generated holograms. , 2006, Applied optics.

[54]  Byoungho Lee,et al.  Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography. , 2008, Applied optics.

[55]  Young-tea Chun,et al.  A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles , 2015, Light: Science & Applications.

[56]  Christopher W. Slinger,et al.  100-megapixel computer-generated holographic images from Active Tiling: a dynamic and scalable electro-optic modulator system , 2003, IS&T/SPIE Electronic Imaging.

[57]  K. Matsushima Computer-generated holograms for three-dimensional surface objects with shade and texture. , 2005, Applied optics.

[58]  Daniel E. Smalley,et al.  Progress in holographic video displays based on guided-wave acousto-optic devices , 2008, SPIE OPTO.

[59]  Yongtian Wang,et al.  Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display. , 2013, Applied optics.

[60]  Ridwan Bin Adrian Tanjung,et al.  Fast CGH computation using S-LUT on GPU. , 2009, Optics express.

[61]  Hakan Urey,et al.  State of the Art in Stereoscopic and Autostereoscopic Displays , 2011, Proceedings of the IEEE.

[62]  James Barabas,et al.  Holovideo for everyone: a low-cost holovideo monitor , 2013 .

[63]  Stephen A. Benton,et al.  Real-Time Display Of 3-D Computed Holograms By Scanning The Image Of An Acousto-Optic Modulator , 1989, Other Conferences.

[64]  Z. You,et al.  Fundamentals of phase-only liquid crystal on silicon (LCOS) devices , 2014, Light: Science & Applications.

[65]  Tomoyoshi Ito,et al.  Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. , 2009, Optics letters.

[66]  Nam Kim,et al.  Generation speed and reconstructed image quality enhancement of a long-depth object using double wavefront recording planes and a GPU. , 2014, Applied optics.

[67]  R. Voorakaranam,et al.  An Updatable Holographic Display for 3D Visualization , 2008, Journal of Display Technology.

[68]  L. Onural,et al.  State of the Art in Holographic Displays: A Survey , 2010, Journal of Display Technology.

[69]  Kyoji Matsushima,et al.  Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography , 2012, J. Electronic Imaging.

[70]  Wataru Sakai,et al.  Triphenylamine-based acrylate polymers for photorefractive composite , 2014, Photonics West - Optoelectronic Materials and Devices.

[71]  Toyohiko Yatagai,et al.  Hidden surface removal of computer-generated holograms for arbitrary diffraction directions. , 2013, Applied optics.

[72]  Eun-Soo Kim,et al.  Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods. , 2009, Applied optics.

[73]  S. Benton,et al.  Synthetic aperture holography: a novel approach to three-dimensional displays , 1992 .

[74]  Tomoyoshi Shimobaba,et al.  Special-purpose computer for real-time reconstruction of holographic motion picture , 2013, Other Conferences.

[75]  V. Bove,et al.  Anisotropic leaky-mode modulator for holographic video displays , 2013, Nature.

[76]  V. Michael Bove,et al.  Display Holography's Digital Second Act , 2012, Proceedings of the IEEE.

[77]  M. Zhang,et al.  Progress on a low-cost holographic video monitor , 2014 .

[78]  Yongtian Wang,et al.  Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography. , 2013, Applied optics.

[79]  F. Wyrowski,et al.  Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[80]  Nasser N Peyghambarian,et al.  Photorefractive polymers for holography , 2014 .

[81]  A. Schwerdtner,et al.  32.3: A New Approach to Electro‐Holography for TV and Projection Displays , 2007 .

[82]  S. Reichelt,et al.  Full-range, complex spatial light modulator for real-time holography. , 2012, Optics letters.

[83]  Yu Zhang,et al.  High-resolution photorefractive gratings in nematic liquid crystals sandwiched with photoconductive polymer film , 2008 .

[84]  Philip J. Bos,et al.  Optimizing the Nematic Liquid Crystal Relaxation Speed by Magnetic Field , 2004 .

[85]  Tomoyoshi Ito,et al.  An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition , 2001 .

[86]  K Matsushima,et al.  Recurrence formulas for fast creation of synthetic three-dimensional holograms. , 2000, Applied optics.

[87]  C W Christenson,et al.  Grating dynamics in a photorefractive polymer with Alq(3) electron traps. , 2010, Optics express.

[88]  R. Häussler,et al.  Large real-time holographic displays: from prototypes to a consumer product , 2009, Electronic Imaging.

[89]  Toyohiko Yatagai,et al.  Fast calculation of computer-generated holograms based on 3-D Fourier spectrum for omnidirectional diffraction from a 3-D voxel-based object. , 2012, Optics express.

[90]  Takanori Senoh,et al.  Large size three-dimensional video by electronic holography using multiple spatial light modulators , 2014, Scientific Reports.

[91]  Daniel E. Smalley Integrated Optics for Holographic Video , 2006 .

[92]  Adolf W. Lohmann A Pre-History of Computer-Generated Holography , 2008 .

[93]  Hirotaka Nakayama,et al.  Generation of real-time large computer generated hologram using wavefront recording method. , 2012, Optics express.

[94]  Shin-Tson Wu,et al.  A low voltage submillisecond-response polymer network liquid crystal spatial light modulator , 2014 .

[95]  N. Clark,et al.  Submicrosecond bistable electro‐optic switching in liquid crystals , 1980 .

[96]  Christopher W. Slinger,et al.  Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization , 2004, IS&T/SPIE Electronic Imaging.