First Assimilation of Atmospheric Temperatures From the Emirates Mars InfraRed Spectrometer

We assimilate atmospheric temperatures from the Emirates Mars Infrared Spectrometer on board the Emirates Mars Mission (EMM) into the Mars Planetary Climate Model at the start of EMM's early science phase (Mars Year 36 Ls = 57.34–92.90°). Mars data assimilation benefits significantly from EMM's unique near‐hemispheric observations, frequent repeated observations of the same location, and full diurnal cycle coverage. Our analysis verifies well against in‐sample temperature observations, and is 1–3 K warmer than Mars Climate Sounder observations. We identify a warm front in concurrent Emirates eXploration Imager observations by correlating an elongated water ice cloud with temperatures and winds in the analysis; the analysis winds are consistent with its observed motion. We also calculate the full horizontal wind diurnal cycle; the zonal flow is weaker and the meridional circulation is stronger than simulating the same time period using the model alone.

[1]  E. Millour,et al.  Assimilation of Temperatures and Column Dust Opacities Measured by ExoMars TGO‐ACS‐TIRVIM During the MY34 Global Dust Storm , 2022, Journal of Geophysical Research: Planets.

[2]  P. Christensen,et al.  EMIRS Observations of the Aphelion‐Season Mars Atmosphere , 2022, Geophysical Research Letters.

[3]  D. Kubitschek,et al.  The Emirates Mars Mission , 2022, Space science reviews.

[4]  E. Millour,et al.  CHALLENGES IN MARS CLIMATE MODELLING WITH THE LMD MARS GLOBAL CLIMATE MODEL, NOW CALLED THE MARS “PLANETARY CLIMATE MODEL” (PCM) , 2022 .

[5]  M. Wolff,et al.  Emirates Mars Mission Characterization of Mars Atmosphere Dynamics and Processes , 2021, Space Science Reviews.

[6]  V. A. Drake,et al.  The Emirates Exploration Imager (EXI) Instrument on the Emirates Mars Mission (EMM) Hope Mission , 2021, Space Science Reviews.

[7]  G. Mehall,et al.  The Emirates Mars Mission (EMM) Emirates Mars InfraRed Spectrometer (EMIRS) Instrument , 2021, Space Science Reviews.

[8]  L. Montabone,et al.  Assimilation of Both Column‐ and Layer‐Integrated Dust Opacity Observations in the Martian Atmosphere , 2021, Earth and space science.

[9]  Manish R. Patel,et al.  OpenMARS: A global record of martian weather from 1999 to 2015 , 2020, Planetary and Space Science.

[10]  B. T. Marshall,et al.  Measuring Mars Atmospheric Winds from Orbit , 2020, Bulletin of the AAS.

[11]  O. Reitebuch,et al.  First validation of Aeolus wind observations by airborne Doppler wind lidar measurements , 2020, Atmospheric Measurement Techniques.

[12]  Patrick M. Dudas,et al.  The Ensemble Mars Atmosphere Reanalysis System (EMARS) Version 1.0 , 2019, Geoscience data journal.

[13]  B. E. Moshkin,et al.  The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter , 2018 .

[14]  E. Kalnay,et al.  The Challenge of Atmospheric Data Assimilation on Mars , 2017 .

[15]  M. Lemmon,et al.  History of Mars atmosphere observations , 2017 .

[16]  Robert M. Haberle,et al.  The atmosphere and climate of Mars , 2017 .

[17]  William J. Emery,et al.  The History of Satellite Remote Sensing , 2017 .

[18]  M. Lemmon,et al.  Eight-year climatology of dust optical depth on Mars , 2014, 1409.4841.

[19]  D. Lowe,et al.  The Mars Analysis Correction Data Assimilation (MACDA) Dataset V1.0 , 2014 .

[20]  Michael D. Smith,et al.  Mars Global Surveyor Thermal Emission Spectrometer (Tes) Observations: Atmospheric Temperatures During Aerobraking and Science Phasing , 2013 .

[21]  J. Schofield,et al.  Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity , 2009 .

[22]  Mark I. Richardson,et al.  PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics , 2007 .

[23]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[24]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[25]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[26]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[27]  A. M. Fincham,et al.  Low cost, high resolution DPIV for measurement of turbulent fluid flow , 1997 .

[28]  J. S. Sawyer The vertical circulation at meteorological fronts and its relation to frontogenesis , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.