A Study on High Speed Face Tracking using the GPGPU-based Depth Information

In this paper, we propose an algorithm to detect and track the human face with a GPU-based high speed. Basically the detection algorithm uses the existing Adaboost algorithm but the search area is dramatically reduced by detecting movement and skin color region. Differently from detection process, tracking algorithm uses only depth information. Basically it uses a template matching method such that it searches a matched block to the template. Also, In order to fast track the face, it was computed in parallel using GPU about the template matching. Experimental results show that the GPU speed when compared with the CPU has been increased to up to 49 times.