Imitation learning for improved 3D PET/MR attenuation correction

[1]  Quanzheng Li,et al.  MR-Based Attenuation Correction for Brain PET Using 3-D Cycle-Consistent Adversarial Network , 2021, IEEE Transactions on Radiation and Plasma Medical Sciences.

[2]  Craig S. Levin,et al.  Pseudo CT Image Synthesis and Bone Segmentation From MR Images Using Adversarial Networks With Residual Blocks for MR-Based Attenuation Correction of Brain PET Data , 2021, IEEE Transactions on Radiation and Plasma Medical Sciences.

[3]  Aaron Carass,et al.  Unsupervised MR-to-CT Synthesis Using Structure-Constrained CycleGAN , 2020, IEEE Transactions on Medical Imaging.

[4]  Habib Zaidi,et al.  Deep learning‐guided joint attenuation and scatter correction in multitracer neuroimaging studies , 2020, Human brain mapping.

[5]  Habib Zaidi,et al.  Deep learning-guided estimation of attenuation correction factors from time-of-flight PET emission data , 2020, Medical Image Anal..

[6]  C. Mader,et al.  Potential Clinical Applications of PET/MR , 2020, IEEE Transactions on Radiation and Plasma Medical Sciences.

[7]  Yang Lei,et al.  Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging , 2019, Physics in medicine and biology.

[8]  Thomas Joyce,et al.  3D Medical Image Synthesis by Factorised Representation and Deformable Model Learning , 2019, SASHIMI@MICCAI.

[9]  Eric Kerfoot,et al.  Pseudo-normal PET Synthesis with Generative Adversarial Networks for Localising Hypometabolism in Epilepsies , 2019, SASHIMI@MICCAI.

[10]  Brian F. Hutton,et al.  Improved MR to CT synthesis for PET/MR attenuation correction using Imitation Learning , 2019, SASHIMI@MICCAI.

[11]  Pengjiang Qian,et al.  UTE-mDixon-based thorax synthetic CT generation. , 2019, Medical physics.

[12]  G. Delso,et al.  Clinical Evaluation of 11C-Met-Avid Pituitary Lesions Using a ZTE-Based AC Method , 2019, IEEE Transactions on Radiation and Plasma Medical Sciences.

[13]  Sotirios A. Tsaftaris,et al.  Disentangled representation learning in cardiac image analysis , 2019, Medical Image Anal..

[14]  Jae Sung Lee,et al.  Improving the Accuracy of Simultaneously Reconstructed Activity and Attenuation Maps Using Deep Learning , 2018, The Journal of Nuclear Medicine.

[15]  Pawel Markiewicz,et al.  Deep Boosted Regression for MR to CT Synthesis , 2018, SASHIMI@MICCAI.

[16]  Apoorva Sikka,et al.  MRI to FDG-PET: Cross-Modal Synthesis Using 3D U-Net For Multi-Modal Alzheimer's Classification , 2018, SASHIMI@MICCAI.

[17]  Xuenan Cui,et al.  Deep CT to MR Synthesis Using Paired and Unpaired Data , 2018, Sensors.

[18]  Gaspar Delso,et al.  Repeatability of ZTE Bone Maps of the Head , 2018, IEEE Transactions on Radiation and Plasma Medical Sciences.

[19]  Sotirios A. Tsaftaris,et al.  Factorised spatial representation learning: application in semi-supervised myocardial segmentation , 2018, MICCAI.

[20]  Jerry L. Prince,et al.  Cross-modality image synthesis from unpaired data using CycleGAN: Effects of gradient consistency loss and training data size , 2018, SASHIMI@MICCAI.

[21]  Hayit Greenspan,et al.  Cross-Modality Synthesis from CT to PET using FCN and GAN Networks for Improved Automated Lesion Detection , 2018, Eng. Appl. Artif. Intell..

[22]  David Atkinson,et al.  NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis , 2017, Neuroinformatics.

[23]  Parashkev Nachev,et al.  Computer Methods and Programs in Biomedicine NiftyNet: a deep-learning platform for medical imaging , 2022 .

[24]  Snehashis Roy,et al.  Synthesizing CT from Ultrashort Echo-Time MR Images via Convolutional Neural Networks , 2017, SASHIMI@MICCAI.

[25]  Jelmer M. Wolterink,et al.  Deep MR to CT Synthesis Using Unpaired Data , 2017, SASHIMI@MICCAI.

[26]  David Dagan Feng,et al.  Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs) , 2017, CMMI/RAMBO/SWITCH@MICCAI.

[27]  Sébastien Ourselin,et al.  On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task , 2017, IPMI.

[28]  F. Wiesinger,et al.  Evaluation of Sinus/Edge-Corrected Zero-Echo-Time–Based Attenuation Correction in Brain PET/MRI , 2017, The Journal of Nuclear Medicine.

[29]  Xiao Han,et al.  MR‐based synthetic CT generation using a deep convolutional neural network method , 2017, Medical physics.

[30]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[31]  Maximilian Baust,et al.  Learning in an Uncertain World: Representing Ambiguity Through Multiple Hypotheses , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[32]  Ninon Burgos,et al.  A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients , 2016, NeuroImage.

[33]  Sébastien Ourselin,et al.  Template-Based Multimodal Joint Generative Model of Brain Data , 2015, IPMI.

[34]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[35]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[36]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[37]  Jerry L Prince,et al.  PET Attenuation Correction Using Synthetic CT from Ultrashort Echo-Time MR Imaging , 2014, The Journal of Nuclear Medicine.

[38]  Ninon Burgos,et al.  Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies , 2014, IEEE Transactions on Medical Imaging.

[39]  Sébastien Ourselin,et al.  A symmetric block-matching framework for global registration , 2014, Medical Imaging.

[40]  A. Alavi,et al.  PET/MR imaging: technical aspects and potential clinical applications. , 2013, Radiology.

[41]  Maurizio Conti,et al.  Simultaneous Reconstruction of Activity and Attenuation in Time-of-Flight PET , 2012, IEEE Transactions on Medical Imaging.

[42]  C. Kuhl,et al.  MRI-Based Attenuation Correction for Hybrid PET/MRI Systems: A 4-Class Tissue Segmentation Technique Using a Combined Ultrashort-Echo-Time/Dixon MRI Sequence , 2012, The Journal of Nuclear Medicine.

[43]  Ilja Bezrukov,et al.  MRI-Based Attenuation Correction for Whole-Body PET/MRI: Quantitative Evaluation of Segmentation- and Atlas-Based Methods , 2011, The Journal of Nuclear Medicine.

[44]  Til Aach,et al.  Simultaneous Reconstruction of Activity and Attenuation for PET/MR , 2011, IEEE Transactions on Medical Imaging.

[45]  Ciprian Catana,et al.  Toward Implementing an MRI-Based PET Attenuation-Correction Method for Neurologic Studies on the MR-PET Brain Prototype , 2010, The Journal of Nuclear Medicine.

[46]  Sébastien Ourselin,et al.  Fast free-form deformation using graphics processing units , 2010, Comput. Methods Programs Biomed..

[47]  Nassir Navab,et al.  Tissue Classification as a Potential Approach for Attenuation Correction in Whole-Body PET/MRI: Evaluation with PET/CT Data , 2009, Journal of Nuclear Medicine.

[48]  Bernhard Schölkopf,et al.  MRI-Based Attenuation Correction for PET/MRI: A Novel Approach Combining Pattern Recognition and Atlas Registration , 2008, Journal of Nuclear Medicine.

[49]  Armin Kolb,et al.  Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? , 2008, Seminars in nuclear medicine.

[50]  A. Buck,et al.  PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[51]  R. Menzel,et al.  Bee brains, B-splines and computational democracy: generating an average shape atlas , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[52]  B F Hutton,et al.  Simultaneous emission and transmission measurements for attenuation correction in whole-body PET. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[53]  W. Nitz,et al.  MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence--initial experience in the brain. , 1992, Radiology.

[54]  Sotirios A. Tsaftaris,et al.  Disentangled representation learning in cardiac image analysis , 2019, Medical Image Anal..

[55]  M. Defrise,et al.  Simultaneous reconstruction of activity and attenuation in Time-of-Flight PET , 2011, 2011 IEEE Nuclear Science Symposium Conference Record.

[56]  Sébastien Ourselin,et al.  Reconstructing a 3D structure from serial histological sections , 2001, Image Vis. Comput..