Single-mode dispersive waves and soliton microcomb dynamics

Dispersive-wave scattering from dissipative Kerr solitons is induced by spatial-mode interactions within a high-Q micro-resonator. A limiting case, single-mode dispersive waves, are observed and their interaction with the soliton causes hysteretic behavior.

[1]  Karlsson,et al.  Cherenkov radiation emitted by solitons in optical fibers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  T. Kippenberg,et al.  Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators , 2016, 1609.02723.

[3]  Steven A. Miller,et al.  Thermally controlled comb generation and soliton modelocking in microresonators. , 2016, Optics letters.

[4]  C. W. Wong,et al.  Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression , 2016, Scientific Reports.

[5]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[6]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[7]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[8]  K. Vahala,et al.  Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. , 2016, Optics letters.

[9]  Xu Yi,et al.  Active capture and stabilization of temporal solitons in microresonators. , 2016, Optics letters.

[10]  T. Kippenberg,et al.  Self-referenced photonic chip soliton Kerr frequency comb , 2016, Light: Science & Applications.

[11]  K. Vahala,et al.  Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities. , 2008, Physical review letters.

[12]  C. Menyuk,et al.  Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators , 2012, 1210.8210.

[13]  N. Peyghambarian,et al.  Nonlinear photonics , 1990 .

[14]  Govind P. Agrawal,et al.  Raman-induced spectral shifts in optical fibers: general theory based on the moment method , 2003 .

[15]  Intracavity characterization of micro-comb generation in the single soliton regime , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[16]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[17]  M. Lipson,et al.  Strong polarization mode coupling in microresonators. , 2014, Optics letters.

[18]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[19]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[20]  Colleen Morrison Frontiers in Optics , 2003 .

[21]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[22]  A. Matsko,et al.  Direct observation of stopped light in a whispering-gallery-mode microresonator , 2007 .

[23]  T. Kippenberg,et al.  Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator , 2016, CLEO 2016.

[24]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[25]  Curtis R. Menyuk,et al.  Nonlinear mode coupling in whispering-gallery-mode resonators , 2016, 1604.01066.

[26]  M. Gorodetsky,et al.  Mode spectrum and temporal soliton formation in optical microresonators. , 2013, Physical review letters.

[27]  Mustapha Tlidi,et al.  Dissipative Solitons: from Optics to Biology and Medicine , 2008 .

[28]  Jian Wang,et al.  Mode-locked dark pulse Kerr combs in normal-dispersion microresonators , 2015, Nature Photonics.

[29]  A. Matsko,et al.  Optical Cherenkov radiation in overmoded microresonators. , 2016, Optics letters.

[30]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[31]  S. Coen,et al.  Ultraweak long-range interactions of solitons observed over astronomical distances , 2013, Nature Photonics.

[32]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[33]  Kathy P. Wheeler,et al.  Reviews of Modern Physics , 2013 .

[34]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[35]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[36]  Yi Xuan,et al.  Observation of Fermi-Pasta-Ulam Recurrence Induced by Breather Solitons in an Optical Microresonator. , 2016, Physical review letters.

[37]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[38]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[39]  H. H. Chen,et al.  Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. , 1986, Optics letters.

[40]  Michael L. Gorodetsky,et al.  Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[41]  S. Diddams,et al.  Soliton Crystals in Kerr Microresonator Frequency Combs , 2016 .

[42]  Kerry J. Vahala,et al.  Stokes solitons in optical microcavities , 2016, Nature Physics.

[43]  Optics for biology and medicine , 2003 .

[44]  Lute Maleki,et al.  On timing jitter of mode locked Kerr frequency combs. , 2013, Optics express.

[45]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[46]  M. Taki,et al.  Solitons and frequency combs in silica microring resonators: Interplay of the Raman and higher-order dispersion effects , 2015, 1503.00672.

[47]  T. Kippenberg,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[48]  G. Agrawal Chapter 11 – Highly Nonlinear Fibers , 2006 .

[49]  A. Matsko,et al.  Mode-locked Kerr frequency combs. , 2011, Optics letters.

[50]  K. Vahala,et al.  Phase-coherent microwave-to-optical link with a self-referenced microcomb , 2016, Nature Photonics.

[51]  S. Diddams,et al.  Soliton crystals in Kerr resonators , 2016, 1610.00080.

[52]  Jian Wang,et al.  Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation , 2014 .

[53]  J. Wiersig Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. , 2006, Physical review letters.

[54]  A. Mussot,et al.  Fermi-Pasta-Ulam Recurrence in Nonlinear Fiber Optics: The Role of Reversible and Irreversible Losses , 2014 .

[55]  Qing Li,et al.  Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip , 2015 .

[56]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[57]  K. Vahala,et al.  Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators , 2016, 1606.00954.

[58]  Steven A. Miller,et al.  Breather soliton dynamics in microresonators , 2016, Nature Communications.

[59]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[60]  Xiaoxiao Xue,et al.  Normal‐dispersion microcombs enabled by controllable mode interactions , 2015, 1503.06142.

[61]  K. Vahala,et al.  Microresonator frequency comb optical clock , 2013, 1309.3525.