Linear Programming for Bernstein Based Solvers

Some interval Newton solvers rely on tensorial Bernstein bases to compute sharp enclosures of multivariate polynomials on the unit hypercube. These solvers compute all coefficients with respect to tensorial Bernstein bases. Unfortunately, polynomials become exponential size in tensorial Bernstein bases. This article gives the first polynomial time method to solve this issue. A polynomial number of relevant Bernstein polynomials is selected. The non-negativity of each of these Bernstein polynomials gives a linear inequality in a space connected to the monomials of the canonical tensorial basis. We resort to linear programming on the resulting Bernstein polytope to compute range bounds of a polynomial or bounds of the zero set.

[1]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[2]  Sebti Foufou,et al.  Geometric constraints solving: some tracks , 2006, SPM '06.

[3]  Sebti Foufou,et al.  Using Cayley-Menger determinants for geometric constraint solving , 2004, SM '04.

[4]  Jürgen Garloff,et al.  Investigation of a subdivision based algorithm for solving systems of polynomial equations , 2001 .

[5]  C. Hoffmann,et al.  Symbolic and numerical techniques for constraint solving , 1998 .

[6]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[7]  Roland Wunderling,et al.  Paralleler und objektorientierter Simplex-Algorithmus , 1996 .

[8]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[9]  Nicholas M. Patrikalakis,et al.  Solving nonlinear polynomial systems in the barycentric Bernstein basis , 2008, The Visual Computer.

[10]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[11]  Dominique Michelucci,et al.  Solving Geometric Constraints By Homotopy , 1996, IEEE Trans. Vis. Comput. Graph..

[12]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[13]  Ralph R. Martin,et al.  Comparison of interval methods for plotting algebraic curves , 2002, Comput. Aided Geom. Des..

[14]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[15]  Bertrand Cottenceau,et al.  Using interval arithmetic to prove that a set is path-connected , 2006, Theor. Comput. Sci..

[16]  Kiyotaka Yamamura,et al.  Finding All Solutions of Nonlinear Equations Using the Dual Simplex Method (Self-validating numerical methods and related topics) , 2000 .

[17]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[18]  Bernard Mourrain,et al.  Subdivision methods for solving polynomial equations , 2009, J. Symb. Comput..

[19]  Sebti Foufou,et al.  Nonlinear systems solver in floating-point arithmetic using LP reduction , 2009, Symposium on Solid and Physical Modeling.

[20]  Bertrand Cottenceau,et al.  Guaranteeing the Homotopy Type of a Set Defined by Non-Linear Inequalities , 2007, Reliab. Comput..