A systems approach for sizing a stand-alone residential PEMFC power system

[1]  Ziyad M. Salameh,et al.  Optimum photovoltaic array size for a hybrid wind/PV system , 1994 .

[2]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[3]  L. Goel,et al.  A study on optimal sizing of stand-alone photovoltaic stations , 1998 .

[4]  Jay O. Keller,et al.  Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies , 1999 .

[5]  T. Willemain,et al.  The threshold bootstrap and threshold jackknife , 1999 .

[6]  S. Srinivasan,et al.  Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects , 2001 .

[7]  T. Willemain,et al.  A Turing Test of Bootstrap Scenarios , 2002 .

[8]  John Paul Bird,et al.  Model of the Air System Transients in a Fuel Cell Vehicle , 2002 .

[9]  Lars Overgaard,et al.  Real life testing of a hybrid PEM fuel cell bus , 2003 .

[10]  J. Pukrushpan Modeling and control of fuel cell systems and fuel processors , 2003 .

[11]  Frank Holcomb,et al.  The DoD residential PEM fuel cell demonstration program , 2003 .

[12]  Mohammad S. Alam,et al.  A dynamic model for a stand-alone PEM fuel cell power plant for residential applications , 2004 .

[13]  P. Britz,et al.  PEM – Fuel Cell System for Residential Applications , 2004 .

[14]  Ryuichiro Goto,et al.  Field performance of a polymer electrolyte fuel cell for a residential energy system , 2005 .

[15]  A. Murata,et al.  Fuel cells and energy networks of electricity, heat, and hydrogen in residential areas , 2006 .

[16]  Jacob Brouwer,et al.  Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications , 2007 .