Effect of Chemical Variations in the Structure of Poly(ethylene oxide)-Based Polymers on Lithium Transport in Concentrated Electrolytes

Polymer electrolytes constitute an attractive alternative to current liquid electrolytes used in Li-ion batteries. Unfortunately, the lithium-ion conductivities of the state-of-the-art polymer elec...

[1]  B. Scrosati,et al.  Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery , 2015 .

[2]  Heng Zhang,et al.  Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. , 2016, Angewandte Chemie.

[3]  S. Greenbaum,et al.  Characteristics of glyme electrolytes for sodium battery: nuclear magnetic resonance and electrochemical study , 2017 .

[4]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[5]  Christopher L. Soles,et al.  Correlations between Ion Conductivity and Polymer Dynamics in Hyperbranched Poly(ethylene oxide) Electrolytes for Lithium-Ion Batteries , 2011 .

[6]  Jeremiah A. Johnson,et al.  Supramolecular Regulation of Anions Enhances Conductivity and Transference Number of Lithium in Liquid Electrolytes. , 2018, Journal of the American Chemical Society.

[7]  Jonathan P. Mailoa,et al.  General Trend of a Negative Li Effective Charge in Ionic Liquid Electrolytes. , 2019, The journal of physical chemistry letters.

[8]  C. Hardacre,et al.  Application of static charge transfer within an ionic-liquid force field and its effect on structure and dynamics. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  E. Akiba,et al.  1H, 7Li, and 19F nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)nCH3 (n=3–50) doped with LiN(SO2CF3)2 , 2002 .

[10]  M. Shiga,et al.  Rapid estimation of elastic constants by molecular dynamics simulation under constant stress , 2004 .

[11]  Aris Marcolongo,et al.  Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes , 2017 .

[12]  Venkat Srinivasan,et al.  Negative Stefan-Maxwell Diffusion Coefficients and Complete Electrochemical Transport Characterization of Homopolymer and Block Copolymer Electrolytes , 2018 .

[13]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[14]  J. Dygas,et al.  IONIC CONDUCTIVITY AND LITHIUM TRANSFERENCE NUMBER OF POLY(ETHYLENE OXIDE):LiTFSI SYSTEM , 2017 .

[15]  B. Scrosati,et al.  Insight on the Li2S electrochemical process in a composite configuration electrode. , 2016, New journal of chemistry = Nouveau journal de chimie.

[16]  Huai Sun,et al.  Computer simulations of poly(ethylene oxide): force field, pvt diagram and cyclization behaviour , 1997 .

[17]  Jeffrey C. Grossman,et al.  Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials , 2019, Nature Communications.

[18]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[19]  Jonathan P. Mailoa,et al.  Transport anomalies emerging from strong correlation in ionic liquid electrolytes , 2019, Journal of Power Sources.

[20]  M. Schönhoff,et al.  Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the "Wrong" direction? , 2018, Physical chemistry chemical physics : PCCP.

[21]  Maria Forsyth,et al.  Ionic conductivity studies of polymeric electrolytes containing lithium salt with plasticizer , 2004 .

[22]  Boris Kozinsky,et al.  Effect of Salt Concentration on Ion Clustering and Transport in Polymer Solid Electrolytes: A Molecular Dynamics Study of PEO–LiTFSI , 2018, Chemistry of Materials.

[23]  H. Sun,et al.  Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters , 1994, J. Comput. Chem..

[24]  O. Borodin,et al.  Structure and energetics of Li(+)-(BF4(-))n, Li(+)-(FSI(-))n, and Li(+)-(TFSI(-))n: ab initio and polarizable force field approaches. , 2014, The journal of physical chemistry. B.

[25]  John Newman,et al.  Negative transference numbers in poly(ethylene oxide)-based electrolytes , 2017 .

[26]  Oleg Borodin,et al.  Structure and dynamics of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid from molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[27]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[28]  Michael A Webb,et al.  Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes. , 2016, The journal of physical chemistry letters.

[29]  O. Borodin,et al.  Development of a Polarizable Force Field for Molecular Dynamics Simulations of Poly (Ethylene Oxide) in Aqueous Solution. , 2011, Journal of chemical theory and computation.

[30]  Li‐Zhen Fan,et al.  Composite effects in poly(ethylene oxide)–succinonitrile based all-solid electrolytes , 2006 .

[31]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[32]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[33]  M. Schönhoff,et al.  Lithium Transference Numbers in PEO/LiTFSA Electrolytes Determined by Electrophoretic NMR , 2019, Journal of The Electrochemical Society.

[34]  O. Borodin,et al.  Force Field Development and MD Simulations of Poly(ethylene oxide)/LiBF4 Polymer Electrolytes , 2003 .

[35]  David G. Mackanic,et al.  Designing polymers for advanced battery chemistries , 2019, Nature Reviews Materials.

[36]  R. C. Agrawal,et al.  Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview , 2008 .

[37]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[38]  Kee Suk Nahm,et al.  Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries , 2006 .

[39]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[40]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[41]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[42]  Thomas F. Miller,et al.  Universal Relationship between Conductivity and Solvation-Site Connectivity in Ether-Based Polymer Electrolytes , 2016 .

[43]  M. Armand,et al.  Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes , 1995 .

[44]  T. Kyu,et al.  Ionic Conductivity in Relation to Ternary Phase Diagram of Poly(ethylene oxide), Succinonitrile, and Lithium Bis(trifluoromethane)sulfonimide Blends , 2012 .

[45]  Marc Doyle,et al.  The importance of the lithium ion transference number in lithium/polymer cells , 1994 .

[46]  M. Doeff,et al.  Transport Properties of a High Molecular Weight Poly(propylene oxide)‐ LiCF3 SO 3 System , 1999 .

[47]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[48]  Oleg Borodin,et al.  Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents. , 2006, The journal of physical chemistry. B.

[49]  Jeffrey C Grossman,et al.  Correlations from Ion Pairing and the Nernst-Einstein Equation. , 2018, Physical review letters.

[50]  N. Balsara,et al.  Difference between approximate and rigorously measured transference numbers in fluorinated electrolytes. , 2019, Physical chemistry chemical physics : PCCP.

[51]  R. Lynden-Bell,et al.  Simulations of imidazolium ionic liquids: when does the cation charge distribution matter? , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  E. Izgorodina,et al.  Assessment of atomic partial charge schemes for polarisation and charge transfer effects in ionic liquids. , 2013, Physical chemistry chemical physics : PCCP.

[53]  Peter V. Wright,et al.  Electrical conductivity in ionic complexes of poly(ethylene oxide) , 1975 .

[54]  Barbara Kirchner,et al.  TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories , 2011, Journal of Cheminformatics.

[55]  Dan He,et al.  Poly(ethylene oxide)-based electrolytes for lithium-ion batteries , 2015 .