Novel Mechanism of Antibiotic Resistance Originating in Vancomycin-Intermediate Staphylococcus aureus

ABSTRACT As an aggressive pathogen, Staphylococcus aureus poses a significant public health threat and is becoming increasingly resistant to currently available antibiotics, including vancomycin, the drug of last resort for gram-positive bacterial infections. S. aureus with intermediate levels of resistance to vancomycin (vancomycin-intermediate S. aureus [VISA]) was first identified in 1996. The resistance mechanism of VISA, however, has not yet been clarified. We have previously shown that cell wall thickening is a common feature of VISA, and we have proposed that a thickened cell wall is a phenotypic determinant for vancomycin resistance in VISA (L. Cui, X. Ma, K. Sato, et al., J. Clin. Microbiol. 41:5-14, 2003). Here we show the occurrence of an anomalous diffusion of vancomycin through the VISA cell wall, which is caused by clogging of the cell wall with vancomycin itself. A series of experiments demonstrates that the thickened cell wall of VISA could protect ongoing peptidoglycan biosynthesis in the cytoplasmic membrane from vancomycin inhibition, allowing the cells to continue producing nascent cell wall peptidoglycan and thus making the cells resistant to vancomycin. We conclude that the cooperative effect of the clogging and cell wall thickening enables VISA to prevent vancomycin from reaching its true target in the cytoplasmic membrane, exhibiting a new class of antibiotic resistance in gram-positive pathogens.

[1]  B. Berger-Bächi,et al.  The femC locus of Staphylococcus aureus required for methicillin resistance includes the glutamine synthetase operon , 1994, Journal of bacteriology.

[2]  G. Bierbaum,et al.  Morphological and Genetic Differences in Two Isogenic Staphylococcus aureus Strains with Decreased Susceptibilities to Vancomycin , 2003, Antimicrobial Agents and Chemotherapy.

[3]  A. Tomasz,et al.  Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus , 1997, Journal of bacteriology.

[4]  D. Williams,et al.  The structure and mode of action of glycopeptide antibiotics of the vancomycin group. , 1984, Annual review of microbiology.

[5]  M. Kuroda,et al.  Identification of the up- and down-regulated genes in vancomycin-resistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. , 2000, Biochemical and biophysical research communications.

[6]  R. Verwer,et al.  Oriented fragmentation of Escherichia coli sacculi by sonication , 1980, Journal of bacteriology.

[7]  Paul H. Axelsen,et al.  Simultaneous Recognition of a Carboxylate-Containing Ligand and an Intramolecular Surrogate Ligand in the Crystal Structure of an Asymmetric Vancomycin Dimer , 1997 .

[8]  M. Lessing,et al.  Vancomycin-resistant Staphylococcus aureus , 1998, The Lancet.

[9]  F. Stylianopoulou,et al.  Emergence of Vancomycin-Intermediate Staphylococcus aureus and S. sciuri, Greece , 2002, Emerging infectious diseases.

[10]  K. Hiramatsu,et al.  Increase in glutamine-non-amidated muropeptides in the peptidoglycan of vancomycin-resistant Staphylococcus aureus strain Mu50. , 1998, The Journal of antimicrobial chemotherapy.

[11]  Arjun Srinivasan,et al.  Vancomycin Resistance in Staphylococci , 2002, Clinical Microbiology Reviews.

[12]  S. Boyle-Vavra,et al.  A Spectrum of Changes Occurs in Peptidoglycan Composition of Glycopeptide-Intermediate Clinical Staphylococcus aureus Isolates , 2001, Antimicrobial Agents and Chemotherapy.

[13]  M. Bischoff,et al.  Involvement of multiple genetic loci in Staphylococcus aureus teicoplanin resistance. , 2001, FEMS microbiology letters.

[14]  A. Balows,et al.  MRSA: current perspectives , 2004 .

[15]  K. Hiramatsu,et al.  New trends in Staphylococcus aureus infections: glycopeptide resistance in hospital and methicillin resistance in the community , 2002, Current opinion in infectious diseases.

[16]  L. Cui,et al.  Isolation in Brazil of Nosocomial Staphylococcus aureus With Reduced Susceptibility to Vancomycin , 2001, Infection Control & Hospital Epidemiology.

[17]  G. Archer,et al.  Role of Penicillin-Binding Protein 4 in Expression of Vancomycin Resistance among Clinical Isolates of Oxacillin-ResistantStaphylococcus aureus , 2001, Antimicrobial Agents and Chemotherapy.

[18]  R. Daum,et al.  Overproduction of a 37-kilodalton cytoplasmic protein homologous to NAD+-linked D-lactate dehydrogenase associated with vancomycin resistance in Staphylococcus aureus , 1996, Antimicrobial agents and chemotherapy.

[19]  K. Hiramatsu,et al.  Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. , 1998, The Journal of antimicrobial chemotherapy.

[20]  J. Shetty,et al.  Genetic Analysis of a High-Level Vancomycin-Resistant Isolate of Staphylococcus aureus , 2003, Science.

[21]  V. Singh,et al.  Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. , 2003, Microbiology.

[22]  L. Cui,et al.  Staphylococcus Aureus Resistance in Genes Associated with Glycopeptide Dna Microarray-based Identification of Supplemental Material , 2005 .

[23]  G. Shockman,et al.  NUTRITIONAL REQUIREMENTS FOR BACTERIAL CELL WALL SYNTHESIS , 1961, Journal of bacteriology.

[24]  G. Edwards,et al.  Vancomycin-intermediate Staphylococcus aureus at a Scottish Hospital , 2000 .

[25]  O. Chesneau,et al.  Retrospective screening for heterogeneous vancomycin resistance in diverse Staphylococcus aureus clones disseminated in French hospitals. , 2000, The Journal of antimicrobial chemotherapy.

[26]  C. Pai,et al.  Vancomycin-Intermediate Staphylococcus aureus in Korea , 2000, Journal of Clinical Microbiology.

[27]  C. Sanders,et al.  Vancomycin concentration in human tissues--preliminary report. , 1979, The Journal of antimicrobial chemotherapy.

[28]  N Woodford,et al.  Vancomycin-resistant enterococci , 1993, The Lancet.

[29]  F. Tenover,et al.  Cell Wall Thickening Is a Common Feature of Vancomycin Resistance in Staphylococcus aureus , 2003, Journal of Clinical Microbiology.

[30]  E. Mongodin,et al.  Microarray Transcription Analysis of Clinical Staphylococcus aureus Isolates Resistant to Vancomycin , 2003, Journal of bacteriology.

[31]  B. Robinson-Dunn,et al.  Emergence of Vancomycin Resistance inStaphylococcus aureus , 1999 .

[32]  A. von Gottberg,et al.  Emerging glycopeptide resistance in gram-positive organisms. , 2000, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.

[33]  C. Martín,et al.  First clinical isolate of vancomycin-intermediate Staphylococcus aureus in a French hospital , 1998, The Lancet.

[34]  Jang-Jih Lu,et al.  Septic Arthritis Caused by Vancomycin-Intermediate Staphylococcus aureus , 2005, Journal of Clinical Microbiology.

[35]  A. Tomasz,et al.  The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. , 1999, The New England journal of medicine.

[36]  A. Tomasz,et al.  Inactivated pbp4 in Highly Glycopeptide-resistant Laboratory Mutants of Staphylococcus aureus * , 1999, The Journal of Biological Chemistry.

[37]  C. Gemmell Glycopeptide resistance in Staphylococcus aureus: is it a real threat? , 2004, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[38]  M. Kuroda,et al.  The emergence and evolution of methicillin-resistant Staphylococcus aureus. , 2001, Trends in microbiology.

[39]  S. Hori,et al.  Suppression of methicillin resistance in a mecA-containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP 2' production , 1996, Antimicrobial agents and chemotherapy.

[40]  R. Paton,et al.  Glycopeptide resistance in an epidemic strain of methicillin-resistant Staphylococcus aureus. , 2001, The Journal of antimicrobial chemotherapy.

[41]  K. Bowker,et al.  Vancomycin-resistant Staphylococcus aureus , 1998, The Lancet.

[42]  M. Bischoff,et al.  tcaA Inactivation Increases Glycopeptide Resistance in Staphylococcus aureus , 2004, Antimicrobial Agents and Chemotherapy.

[43]  P. Fey,et al.  Teicoplanin-resistant Staphylococcus aureus expresses a novel membrane protein and increases expression of penicillin-binding protein 2 complex , 1993, Antimicrobial Agents and Chemotherapy.

[44]  M. Sugai,et al.  Increased Glycan Chain Length Distribution and Decreased Susceptibility to Moenomycin in a Vancomycin-Resistant Staphylococcus aureus Mutant , 2002, Antimicrobial Agents and Chemotherapy.

[45]  S. Cosgrove,et al.  Staphylococcus aureus with reduced susceptibility to vancomycin--United States, 1997. , 1997, MMWR. Morbidity and mortality weekly report.

[46]  L. Cui,et al.  Has vancomycin-resistant Staphylococcus aureus started going it alone? , 2004, The Lancet.

[47]  R. Daum,et al.  Cloning of the Staphylococcus aureus ddh gene encoding NAD+-dependent D-lactate dehydrogenase and insertional inactivation in a glycopeptide-resistant isolate , 1997, Journal of bacteriology.

[48]  F. Tenover,et al.  Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. , 1997, The Journal of antimicrobial chemotherapy.

[49]  G. Pugliese,et al.  S aureus With Reduced Susceptibility to Vancomycin , 2000, Infection Control & Hospital Epidemiology.

[50]  D. Williams,et al.  An analysis of the origins of a cooperative binding energy of dimerization. , 1998, Science.

[51]  K. Hiramatsu,et al.  Vancomycin-resistant Staphylococcus aureus occurs in South Africa. , 2000, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.

[52]  K. Hiramatsu Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. , 2001, The Lancet. Infectious diseases.

[53]  H. Murakami,et al.  Contribution of a Thickened Cell Wall and Its Glutamine Nonamidated Component to the Vancomycin Resistance Expressed by Staphylococcus aureus Mu50 , 2000, Antimicrobial Agents and Chemotherapy.