Introducing context-dependent and spatially-variant viewing biases in saccadic models

[1]  Let's look at those isochromatic lines again , 1961 .

[2]  I. Biederman,et al.  On the information extracted from a glance at a scene. , 1974, Journal of experimental psychology.

[3]  J. Peacock Two-dimensional goodness-of-fit testing in astronomy , 1983 .

[4]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[5]  S R Ellis,et al.  Statistical Dependency in Visual Scanning , 1986, Human factors.

[6]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[7]  James J. Clark,et al.  Modal Control Of An Attentive Vision System , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[8]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[9]  S. Ullman,et al.  Spatial Context in Recognition , 1996, Perception.

[10]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[11]  J. Henderson,et al.  High-level scene perception. , 1999, Annual review of psychology.

[12]  Theo Geisel,et al.  The ecology of gaze shifts , 2000, Neurocomputing.

[13]  泽熙 信息时代的in the Information管理 , 2000 .

[14]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[15]  M. Chun,et al.  Contextual cueing of visual attention , 2022 .

[16]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[17]  J. Pratt,et al.  The Spatial Distribution of Inhibition of Return , 2001, Psychological science.

[18]  J. Pelz,et al.  Oculomotor behavior and perceptual strategies in complex tasks , 2001, Vision Research.

[19]  Derrick J. Parkhurst,et al.  Modeling the role of salience in the allocation of overt visual attention , 2002, Vision Research.

[20]  N. Suga,et al.  Criticisms of 'Specific long-term memory traces in primary auditory cortex' , 2004, Nature Reviews Neuroscience.

[21]  Giuseppe Boccignone,et al.  Modelling gaze shift as a constrained random walk , 2004 .

[22]  J. Wolfe,et al.  What attributes guide the deployment of visual attention and how do they do it? , 2004, Nature Reviews Neuroscience.

[23]  Michael L. Mack,et al.  Human Gaze Control in RealWorld Search , 2004, WAPCV.

[24]  M. Bar Visual objects in context , 2004, Nature Reviews Neuroscience.

[25]  B. Velichkovsky,et al.  Time course of information processing during scene perception: The relationship between saccade amplitude and fixation duration , 2005 .

[26]  Asha Iyer,et al.  Components of bottom-up gaze allocation in natural images , 2005, Vision Research.

[27]  Iain D. Gilchrist,et al.  Visual correlates of fixation selection: effects of scale and time , 2005, Vision Research.

[28]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[29]  L. Itti,et al.  Visual causes versus correlates of attentional selection in dynamic scenes , 2006, Vision Research.

[30]  Patrick Le Callet,et al.  A coherent computational approach to model bottom-up visual attention , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[32]  Christof Koch,et al.  Predicting human gaze using low-level saliency combined with face detection , 2007, NIPS.

[33]  Benjamin W Tatler,et al.  The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. , 2007, Journal of vision.

[34]  John K. Tsotsos,et al.  Attention and Performance in Computational Vision , 2008 .

[35]  Tom Foulsham,et al.  Turning the world around: Patterns in saccade direction vary with picture orientation , 2008, Vision Research.

[36]  Benjamin W. Tatler,et al.  Systematic tendencies in scene viewing , 2008 .

[37]  Marcus Nyström,et al.  Semantic override of low-level features in image viewing - both initially and overall , 2008 .

[38]  P. Perona,et al.  Objects predict fixations better than early saliency. , 2008, Journal of vision.

[39]  B. Tatler,et al.  The prominence of behavioural biases in eye guidance , 2009 .

[40]  F. Scharnowski,et al.  Long-lasting modulation of feature integration by transcranial magnetic stimulation. , 2009, Journal of vision.

[41]  John K. Tsotsos,et al.  Saliency, attention, and visual search: an information theoretic approach. , 2009, Journal of vision.

[42]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[43]  Meredith Ringel Morris,et al.  What do you see when you're surfing?: using eye tracking to predict salient regions of web pages , 2009, CHI.

[44]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[45]  J. Hyönä,et al.  Emotional scene content drives the saccade generation system reflexively. , 2009, Journal of experimental psychology. Human perception and performance.

[46]  John M. Henderson,et al.  Clustering of Gaze During Dynamic Scene Viewing is Predicted by Motion , 2011, Cognitive Computation.

[47]  Gert Kootstra,et al.  Predicting Eye Fixations on Complex Visual Stimuli Using Local Symmetry , 2011, Cognitive Computation.

[48]  Christof Koch,et al.  Components of bottom-up gaze allocation in natural scenes , 2010 .

[49]  Thierry Baccino,et al.  New insights into ambient and focal visual fixations using an automatic classification algorithm , 2011, i-Perception.

[50]  D. Ballard,et al.  Eye guidance in natural vision: reinterpreting salience. , 2011, Journal of vision.

[51]  Giuseppe Boccignone,et al.  Modelling eye-movement control via a constrained search approach , 2011, 3rd European Workshop on Visual Information Processing.

[52]  C. Beaulieu PREDICTING SALIENCY USING TWO CONTEXTUAL PRIORS: THE DOMINANT DEPTH AND THE HORIZON LINE , 2011 .

[53]  Nishan Canagarajah,et al.  Eye Movements to Natural Images as a Function of Sex and Personality , 2012, PloS one.

[54]  Michelle R. Greene,et al.  Reconsidering Yarbus: A failure to predict observers’ task from eye movement patterns , 2012, Vision Research.

[55]  Antón García-Díaz,et al.  Saliency from hierarchical adaptation through decorrelation and variance normalization , 2012, Image Vis. Comput..

[56]  Nathalie Guyader,et al.  Improving Visual Saliency by Adding ‘Face Feature Map’ and ‘Center Bias’ , 2012, Cognitive Computation.

[57]  Frédo Durand,et al.  A Benchmark of Computational Models of Saliency to Predict Human Fixations , 2012 .

[58]  Kowa Koida,et al.  Color vision test for dichromatic and trichromatic macaque monkeys. , 2013, Journal of vision.

[59]  T. Smith,et al.  Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes. , 2013, Journal of vision.

[60]  Nicolas Riche,et al.  RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis , 2013, Signal Process. Image Commun..

[61]  Esa Rahtu,et al.  Stochastic bottom-up fixation prediction and saccade generation , 2013, Image Vis. Comput..

[62]  Thierry Baccino,et al.  Methods for comparing scanpaths and saliency maps: strengths and weaknesses , 2012, Behavior Research Methods.

[63]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  S. Martinez-Conde,et al.  The impact of microsaccades on vision: towards a unified theory of saccadic function , 2013, Nature Reviews Neuroscience.

[65]  M. Herzog,et al.  How color, regularity, and good Gestalt determine backward masking. , 2014, Journal of vision.

[66]  A. Coutrot,et al.  How saliency, faces, and sound influence gaze in dynamic social scenes. , 2014, Journal of vision.

[67]  Qi Zhao,et al.  Webpage Saliency , 2014, ECCV.

[68]  Zhi Liu,et al.  Saliency Aggregation: Does Unity Make Strength? , 2014, ACCV.

[69]  Antoine Coutrot,et al.  An audiovisual attention model for natural conversation scenes , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[70]  Tim Chuk,et al.  Understanding eye movements in face recognition using hidden Markov models. , 2014, Journal of vision.

[71]  M. Pomplun,et al.  Guidance of visual attention by semantic information in real-world scenes , 2014, Front. Psychol..

[72]  Galit Yovel,et al.  Faces in the eye of the beholder: unique and stable eye scanning patterns of individual observers. , 2014, Journal of vision.

[73]  Brad Wyble,et al.  Detecting meaning in RSVP at 13 ms per picture , 2013, Attention, perception & psychophysics.

[74]  Nienke Meulman,et al.  An ERP study on L2 syntax processing: When do learners fail? , 2014, Front. Psychol..

[75]  Ralf Engbert,et al.  ICAT: a computational model for the adaptive control of fixation durations , 2014, Psychonomic bulletin & review.

[76]  Dirk B. Walther,et al.  Dissociation of salience-driven and content-driven spatial attention to scene category with predictive decoding of gaze patterns. , 2015, Journal of vision.

[77]  John K. Tsotsos,et al.  On computational modeling of visual saliency: Examining what’s right, and what’s left , 2015, Vision Research.

[78]  Garrison W. Cottrell,et al.  Humans have idiosyncratic and task-specific scanpaths for judging faces , 2015, Vision Research.

[79]  Zhi Liu,et al.  Saccadic model of eye movements for free-viewing condition , 2015, Vision Research.

[80]  Kitsuchart Pasupa,et al.  Learning to Predict Where People Look with Tensor-Based Multi-view Learning , 2015, ICONIP.

[81]  Ali Borji,et al.  What do eyes reveal about the mind?: Algorithmic inference of search targets from fixations , 2015, Neurocomputing.