Attenuation Compensation and Anisotropy Correction in Reverse Time Migration for Attenuating Tilted Transversely Isotropic Media

[1]  T. Zhu,et al.  Propagating Seismic Waves in VTI Attenuating Media Using Fractional Viscoelastic Wave Equation , 2022, Journal of Geophysical Research: Solid Earth.

[2]  Jianping Huang,et al.  Modeling viscoacoustic wave propagation using a new spatial variable-order fractional Laplacian wave equation , 2021, GEOPHYSICS.

[3]  Xiaowen Tang,et al.  Inversion of dry and saturated P- and S-wave velocities for pore aspect ratio spectrum using a cracked porous medium elastic wave theory , 2021, GEOPHYSICS.

[4]  Bingbing Sun,et al.  Pseudo-elastic pure P-mode wave equation , 2021, GEOPHYSICS.

[5]  Hejun Zhu,et al.  Viscoacoustic reverse time migration with a robust space-wavenumber domain attenuation compensation operator , 2021, GEOPHYSICS.

[6]  Yujin Liu,et al.  Least-squares Gaussian beam migration in viscoacoustic media , 2019, GEOPHYSICS.

[7]  T. Zhu,et al.  A viscoelastic model for seismic attenuation using fractal mechanical networks , 2020, Geophysical Journal International.

[8]  K. Innanen,et al.  Q-compensated reverse time migration in tilted transversely isotropic media , 2020 .

[9]  Yabing Zhang,et al.  Viscoelastic Wave Simulation with High Temporal Accuracy Using Frequency-Dependent Complex Velocity , 2020, Surveys in Geophysics.

[10]  Chengyu Sun,et al.  Modelling of viscoacoustic wave propagation in transversely isotropic media using decoupled fractional Laplacians , 2020, Geophysical Prospecting.

[11]  Yabing Zhang,et al.  Arbitrary‐order Taylor series expansion‐based viscoacoustic wavefield simulation in 3D vertical transversely isotropic media , 2020, Geophysical Prospecting.

[12]  Yun-dong Guo,et al.  Least-squares reverse time migration in TTI media using a pure qP-wave equation , 2020, GEOPHYSICS.

[13]  Hui Zhou,et al.  An implicit stabilization strategy for Q-compensated reverse time migration , 2020 .

[14]  Jianping Huang,et al.  Modeling of pure qP- and qSV-waves in tilted transversely isotropic media with the optimal quadratic approximation , 2020 .

[15]  T. Zhu,et al.  Fractional Laplacians viscoacoustic wavefield modeling with k-space-based time-stepping error compensating scheme , 2020 .

[16]  Qingqing Li,et al.  Stable and High-Efficiency Attenuation Compensation in Reverse-Time Migration Using Wavefield Decomposition Algorithm , 2019, IEEE Geoscience and Remote Sensing Letters.

[17]  Hejun Zhu,et al.  Viscoacoustic least-squares reverse time migration using a time-domain complex-valued wave equation , 2019, GEOPHYSICS.

[18]  Martina Wittmann-Hohlbein,et al.  Visco-acoustic least-squares reverse time migration in TTI media and application to OBN data , 2019, SEG Technical Program Expanded Abstracts 2019.

[19]  T. Alkhalifah,et al.  Viscoacoustic anisotropic wave equations , 2019, GEOPHYSICS.

[20]  Yangkang Chen,et al.  A matrix-transform numerical solver for fractional Laplacian viscoacoustic wave equation , 2019, GEOPHYSICS.

[21]  T. Zhu,et al.  Efficient modeling of wave propagation in a vertical transversely isotropic attenuative medium based on fractional Laplacian , 2019, GEOPHYSICS.

[22]  Li-Yun Fu,et al.  Effective Q-compensated reverse time migration using new decoupled fractional Laplacian viscoacoustic wave equation , 2019, GEOPHYSICS.

[23]  T. Zhu,et al.  Attenuation compensation for time-reversal imaging in VTI media , 2018, GEOPHYSICS.

[24]  M. Warner,et al.  Wave modeling in viscoacoustic media with transverse isotropy , 2019, GEOPHYSICS.

[25]  Z. Ren,et al.  A stable and efficient approach of Q reverse time migration , 2018, GEOPHYSICS.

[26]  Jidong Yang,et al.  Viscoacoustic reverse time migration using a time-domain complex-valued wave equation , 2018, GEOPHYSICS.

[27]  T. Zhu,et al.  Solving fractional Laplacian viscoelastic wave equations using domain decomposition , 2018, SEG Technical Program Expanded Abstracts 2018.

[28]  Hejun Zhu,et al.  A time-domain complex-valued wave equation for modelling visco-acoustic wave propagation , 2018, Geophysical Journal International.

[29]  Hejun Zhu,et al.  A finite-difference approach for solving pure quasi-P-wave equations in transversely isotropic and orthorhombic media , 2018, GEOPHYSICS.

[30]  Hua-wei Zhou,et al.  Reverse time migration: A prospect of seismic imaging methodology , 2018 .

[31]  Hui Zhou,et al.  Adaptive stabilization for Q-compensated reverse time migration , 2018 .

[32]  T. Zhu,et al.  Strategies for stable attenuation compensation in reverse‐time migration , 2017 .

[33]  Zhenchun Li,et al.  Attenuation compensation in anisotropic least-squares reverse time migration , 2017 .

[34]  Tieyuan Zhu,et al.  Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation , 2017 .

[35]  Tieyuan Zhu,et al.  Locally solving fractional Laplacian viscoacoustic wave equation using Hermite distributed approximating functional method , 2017 .

[36]  T. Alkhalifah,et al.  Common-image gathers using the excitation amplitude imaging condition , 2016 .

[37]  T. Zhu Implementation aspects of attenuation compensation in reverse‐time migration , 2016 .

[38]  T. Alkhalifah,et al.  Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media , 2016 .

[39]  David Smeulders,et al.  Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom , 2016 .

[40]  Jianping Huang,et al.  Viscoacoustic Reverse Time Migration by Adding a Regularization Term , 2015 .

[41]  Wencai Xu,et al.  Pure Viscoacoustic Equation of TTI Media and Applied it in Anisotropic RTM , 2015 .

[42]  Zhenchun Li,et al.  A pure viscoacoustic equation for VTI media applied in anisotropic RTM , 2015 .

[43]  Gerard T. Schuster,et al.  Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation , 2014 .

[44]  Sergey Fomel,et al.  Viscoacoustic modeling and imaging using low-rank approximation , 2014 .

[45]  Tieyuan Zhu,et al.  Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians , 2014 .

[46]  Biondo Biondi,et al.  Q-compensated reverse-time migration , 2014 .

[47]  Tariq Alkhalifah,et al.  The optimized expansion based low-rank method for wavefield extrapolation , 2014 .

[48]  Bin Wang,et al.  Compensating Visco-Acoustic Effects in Anisotropic Resverse-Time Migration , 2012 .

[49]  T. Zhu,et al.  Approximating constant‐Q seismic propagation in the time domain , 2012 .

[50]  T. Alkhalifah Acoustic anisotropic wavefields through perturbation theory , 2012 .

[51]  Paul L. Stoffa,et al.  Decoupled equations for reverse time migration in tilted transversely isotropic media , 2012 .

[52]  Phil D. Anno,et al.  Approximation of pure acoustic seismic wave propagation in TTI media , 2011 .

[53]  Peter M. Bakker,et al.  Stable P-wave modeling for reverse-time migration in tilted TI media , 2011 .

[54]  Lexing Ying,et al.  Seismic wave extrapolation using lowrank symbol approximation , 2013 .

[55]  Yu Zhang,et al.  Compensating for visco-acoustic effects with reverse time migration , 2010 .

[56]  Joe Zhou,et al.  Compensating for Visco-Acoustic Effects in TTI Reverse Time Migration , 2010 .

[57]  Yu Zhang,et al.  A stable TTI reverse time migration and its implementation , 2011 .

[58]  James Sun,et al.  3D prestack depth migration with compensation for frequency dependent absorption and dispersion , 2010 .

[59]  Robin P. Fletcher,et al.  Reverse time migration in tilted transversely isotropic "TTI… media , 2009 .

[60]  José M. Carcione,et al.  Theory and modeling of constant-Q P- and S-waves using fractional time derivatives , 2009 .

[61]  Eric Duveneck,et al.  Acoustic VTI Wave Equations And Their Application For Anisotropic Reverse-time Migration , 2008 .

[62]  Joseph M. Reilly,et al.  Amplitude and Bandwidth Recovery Beneath Gas Zones Using Kirchhoff Prestack Depth Q-Migration , 2008 .

[63]  A. Best,et al.  A laboratory study of seismic velocity and attenuation anisotropy in near‐surface sedimentary rocks , 2007 .

[64]  M. Chapman,et al.  Velocity and attenuation anisotropy Implication of seismic fracture characterizations , 2007 .

[65]  Yanghua Wang,et al.  Inverse Q-filter for seismic resolution enhancement , 2006 .

[66]  Guanquan Zhang,et al.  An Anisotropic Acoustic Wave Equation For Modeling And Migration In 2D TTI Media , 2006 .

[67]  J. Kendall,et al.  Attenuation anisotropy and the relative frequency content of split shear waves , 2004 .

[68]  K. Wapenaar,et al.  Wavefield extrapolation and prestack depth migration in anelastic inhomogeneous media , 2002 .

[69]  José M. Carcione,et al.  Time-domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives , 2002 .

[70]  Yanghua Wang,et al.  A stable and efficient approach of inverse Q filtering , 2002 .

[71]  Yue Wang,et al.  REVERSE-TIME MIGRATION , 1999 .

[72]  Tariq Alkhalifah,et al.  An acoustic wave equation for anisotropic media , 2000 .

[73]  G. McMechan,et al.  Multifrequency viscoacoustic modeling and inversion , 1996 .

[74]  G. West,et al.  Inverse Q Migration , 1994 .

[75]  W. Rizer,et al.  VELOCITY AND ATTENUATION ANISOTROPY CAUSED BY MICROCRACKS AND MACROFRACTURES IN A MULTIAZIMUTH REVERSE VSP , 1993 .

[76]  N. Hargreaves,et al.  Inverse Q filtering by Fourier transform , 1991 .

[77]  J. Carcione Wave propagation in anisotropic linear viscoelastic media: theory and simulated wavefields , 1990 .

[78]  José M. Carcione,et al.  Viscoacoustic wave propagation simulation in the earth , 1988 .

[79]  L. Thomsen Weak elastic anisotropy , 1986 .

[80]  S. Bickel,et al.  Plane-wave Q deconvolution , 1985 .

[81]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[82]  E. Baysal,et al.  Reverse time migration , 1983 .

[83]  G. McMechan MIGRATION BY EXTRAPOLATION OF TIME‐DEPENDENT BOUNDARY VALUES* , 1983 .

[84]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[85]  R. L. Mills,et al.  ATTENUATION OF SHEAR AND COMPRESSIONAL WAVES IN PIERRE SHALE , 1958 .