Dense classes of multivariate extreme value distributions

In this paper, we explore tail dependence modeling in multivariate extreme value distributions. The measure of dependence chosen is the scale function, which allows combinations of distributions in a very flexible way. The correspondences between the scale function and the spectral measure or the stable tail dependence function are given. Combining scale functions by simple operations, three parametric classes of laws are (re)constructed and analyzed, and resulting nested and structured models are discussed. Finally, the denseness of each of these classes is shown.

[1]  J. Segers,et al.  An M-Estimator for Tail Dependence in Arbitrary Dimensions , 2011 .

[2]  L. de Haan,et al.  A CHARACTERIZATION OF MULTIDIMENSIONAL EXTREME -VALUE DISTRIBUTIONS , 1977 .

[3]  S. Resnick,et al.  Limit theory for multivariate sample extremes , 1977 .

[4]  Jesús A. De Loera,et al.  How to integrate a polynomial over a simplex , 2008, Math. Comput..

[5]  Richard L. Smith,et al.  Characterization and Estimation of the Multivariate Extremal Index , 1996 .

[6]  J. Nolan,et al.  Models for Dependent Extremes Using Stable Mixtures , 2007, 0711.2345.

[7]  John P. Nolan Metrics for multivariate stable distributions , 2010 .

[8]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[9]  H. Joe Multivariate models and dependence concepts , 1998 .

[10]  H. Joe Multivariate extreme value distributions , 1997 .

[11]  P. Hougaard A class of multivanate failure time distributions , 1986 .

[12]  A. Naess,et al.  Statistics of bivariate extreme values by the ACER method , 2014 .

[13]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[14]  Richard L. Smith,et al.  The behavior of multivariate maxima of moving maxima processes , 2004 .

[15]  Claudia Klüppelberg,et al.  Bivariate extreme value distributions based on polynomial dependence functions , 2006 .

[16]  Masaaki Sibuya,et al.  Bivariate extreme statistics, I , 1960 .

[17]  S. Nadarajah,et al.  Extreme value distributions , 2013 .

[18]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[19]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[20]  J. Tawn Modelling multivariate extreme value distributions , 1990 .

[21]  M. Weibull,et al.  A Multivariate Distribution with Weibull Connections , 1989 .

[22]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[23]  Johan Segers,et al.  A Method of Moments Estimator of Tail Dependence , 2007 .

[24]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[25]  A. Stephenson Simulating Multivariate Extreme Value Distributions of Logistic Type , 2003 .

[26]  Lei Si Ni Ke Resnick.S.I. Extreme values. regular variation. and point processes , 2011 .

[27]  Paul Deheuvels,et al.  Point processes and multivariate extreme values , 1983 .