Tailoring Antenna Focal Plane Characteristics for a Compact Free-Space Microwave Complex Dielectric Permittivity Measurement Setup

This article presents a compact precision free-space microwave measurement setup with a choice of three dielectric lenses to tailor the antenna focal plane characteristics for extracting complex dielectric permittivity of small samples. Custom designed spot-focusing horn antenna pairs were used to achieve a compact setup with antenna separation distance, <inline-formula> <tex-math notation="LaTeX">${2}{f}_{l}$ </tex-math></inline-formula>:<inline-formula> <tex-math notation="LaTeX">$4{\lambda }_{c}$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$8{\lambda }_{c}$ </tex-math></inline-formula> and focal spot size, <inline-formula> <tex-math notation="LaTeX">${f}_{s}$ </tex-math></inline-formula>:<inline-formula> <tex-math notation="LaTeX">$1{\lambda }_{c}$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$1.5{\lambda }_{c}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">${\lambda }_{c}$ </tex-math></inline-formula> is the wavelength at center frequency. Using the compact free-space setup, relative complex permittivity (<inline-formula> <tex-math notation="LaTeX">${\varepsilon '-j\varepsilon ''}$ </tex-math></inline-formula>) was extracted over 8–12 GHz for low- and high-loss dielectrics with lateral dimensions, <inline-formula> <tex-math notation="LaTeX">$3.3{\lambda }_{c}\times 3.3{\lambda }_{c}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$10{\lambda }_{c}\times 10{\lambda }_{c}$ </tex-math></inline-formula>. For large materials under test (MUTs), i.e., <inline-formula> <tex-math notation="LaTeX">$10{\lambda }_{c}\times 10{\lambda }_{c}$ </tex-math></inline-formula>, measurement accuracy in dielectric constant, <inline-formula> <tex-math notation="LaTeX">${\Delta \varepsilon '}$ </tex-math></inline-formula>% was <0.65% and ≤1.14% for low- and high-loss dielectrics, respectively. For smaller MUTs (<inline-formula> <tex-math notation="LaTeX">$3.3{\lambda }_{c}\times 3.3{\lambda }_{c}$ </tex-math></inline-formula>), <inline-formula> <tex-math notation="LaTeX">${\Delta \varepsilon '}$ </tex-math></inline-formula>% was <0.89% and ≤2.29% for low- and high-loss MUTs, respectively. The error in loss tangent (<inline-formula> <tex-math notation="LaTeX">${\Delta }\text {tan}{\delta }$ </tex-math></inline-formula>) varied over 0.002–0.016 and 0.015–0.056 for large (<inline-formula> <tex-math notation="LaTeX">$10{\lambda }_{c}\times 10{\lambda }_{c}$ </tex-math></inline-formula>) and small MUTs (<inline-formula> <tex-math notation="LaTeX">$3.3{\lambda }_{c}\times 3.3{\lambda }_{c}$ </tex-math></inline-formula>), respectively. For large MUTs, biconvex lens pair with the smallest <inline-formula> <tex-math notation="LaTeX">${f}_{s}$ </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">$1{\lambda }_{c}$ </tex-math></inline-formula>) and <inline-formula> <tex-math notation="LaTeX">${f}_{l}$ </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">$4{\lambda }_{c}$ </tex-math></inline-formula>) among the three lenses yielded the best accuracy in dielectric constant (<inline-formula> <tex-math notation="LaTeX">${\varepsilon '}$ </tex-math></inline-formula>) due to tight field focusing at the focal plane. The plano-convex lens pair yielded the best accuracy in loss tangent (<inline-formula> <tex-math notation="LaTeX">$\text {tan}{\delta =\varepsilon ''/\varepsilon '}$ </tex-math></inline-formula>) for large MUTs due to slow variation in the phase of the local plane wave. By tailoring antenna focal plane characteristics, a compact free-space setup that is <inline-formula> <tex-math notation="LaTeX">$6\times $ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$10\times $ </tex-math></inline-formula> smaller than the classical setup for handling MUTs that are 1/5th of the size used in classical setup is demonstrated without compromising the measurement accuracy.

[2]  Eric Ongareau,et al.  Charts for a quick design of spot-focusing corrugated horn lens antennas , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[3]  C. Legrand,et al.  Noniterative stable transmission/reflection method for low-loss material complex permittivity determination , 1997 .

[4]  L. Jofre,et al.  Debye Frequency-Extended Waveguide Permittivity Extraction for High Complex Permittivity Materials: Concrete Setting Process Characterization , 2020, IEEE Transactions on Instrumentation and Measurement.

[5]  J. Greivenkamp Field Guide to Geometrical Optics , 2004 .

[6]  R. Clarke,et al.  The measurement of the properties of materials , 1986, Proceedings of the IEEE.

[7]  Erwin Biebl,et al.  A broadband free-space dielectric properties measurement system at millimeter wavelengths , 1996 .

[8]  Alkim Akyurtlu,et al.  All 3-D Printed Free-Space Setup for Microwave Dielectric Characterization of Materials , 2018, IEEE Transactions on Instrumentation and Measurement.

[9]  M. Sundaram Transmission and Reflection method with a material filled transmission line for measuring Dielectric properties , 2004 .

[10]  D. E. Muller A method for solving algebraic equations using an automatic computer , 1956 .

[11]  V. Varadan,et al.  A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies , 1989 .

[12]  Erich Kemptner,et al.  A free space measurement approach for dielectric material characterization , 2013, 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC).

[13]  M. Okoniewski,et al.  Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies , 2005, IEEE Transactions on Microwave Theory and Techniques.

[14]  Measurement of Dielectric Material Properties Application Note , 2012 .

[15]  Stefano Pisa,et al.  Permittivity measurement on construction materials through free space method , 2017, 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC).

[16]  A.P. King,et al.  The Radiation Characteristics of Conical Horn Antennas , 1950, Proceedings of the IRE.

[17]  Bernd Geck,et al.  Compact Unfocused Antenna Setup for X-Band Free-Space Dielectric Measurements Based on Line-Network-Network Calibration Method , 2013, IEEE Transactions on Instrumentation and Measurement.

[18]  Jerzy Krupka,et al.  Complex permittivity measurements of common plastics over variable temperatures , 2003 .

[19]  Craig Armiento,et al.  Microwave dielectric characterization of flexible plastic films using printed electronics , 2016, 2016 87th ARFTG Microwave Measurement Conference (ARFTG).

[20]  V. Varadan,et al.  Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies , 1990 .

[21]  Stefano Pisa,et al.  A comparative assessment of microwave-based methods for moisture content characterization in stone materials , 2018 .

[22]  Vijay K. Varadan,et al.  Free-space, broadband measurements of high-temperature, complex dielectric properties at microwave frequencies , 1991 .

[23]  Jyh Sheen,et al.  Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques , 2009 .

[24]  Thomas Johnson,et al.  PERMITTIVITY MEASUREMENTS OF BIOLOGICAL SAMPLES BY AN OPEN-ENDED COAXIAL LINE , 2020, 2007.07343.

[25]  Achmad Munir,et al.  Design of rectangular to circular waveguide converter for S-band frequency , 2011, Proceedings of the 2011 International Conference on Electrical Engineering and Informatics.