Development of a Test to Simulate Wave Impact on Composite Sandwich Marine Structures

Wave impact is a potentially damaging load case not only for fast ships and racing yachts but also for wave energy devices and signal buoys. This chapter describes the development and analysis of a test designed to simulate the response of composite and sandwich marine structures subjected to wave impact. First a brief overview of previous work on impact of composites and sandwich materials is given, and existing tests to study wave slamming are discussed. The development of a medicine ball test is then described, and examples of results from tests on various sandwich panels are given. Finally, the evolution from a qualitative to a quantitative test is described, FE modelling is discussed and examples of results are given.

[1]  Dominique Choqueuse,et al.  Structural mechanical testing of a full-size adhesively bonded motorboat , 2004 .

[2]  L. S. Sutherland,et al.  Scaling of impact on low fibre-volume glass–polyester laminates , 2007 .

[3]  John Morton,et al.  Scaling of impact-loaded carbon-fiber composites , 1988 .

[4]  Kenneth E. Evans,et al.  Failure mechanisms during the transverse loading of filament-wound pipes under static and low velocity impact conditions , 1992 .

[5]  Z. Mathys,et al.  Post-fire mechanical properties of marine polymer composites , 1999 .

[6]  AbuBakr S. Bahaj,et al.  Generating electricity from the oceans , 2011 .

[7]  S. Charca,et al.  Damage Assessment Due to Single Slamming of Foam Core Sandwich Composites , 2010 .

[8]  Brian Hayman,et al.  Damage tolerance assessment of composite sandwich panels with localised damage , 2005 .

[9]  Anthony N. Palazotto,et al.  Low-velocity impact damage initiation in graphite/epoxy/Nomex honeycomb-sandwich plates , 1998 .

[10]  A. C. Fairlie-Clarke,et al.  An experimental investigation into the constant velocity water entry of wedge-shaped sections , 2008 .

[11]  Kenneth E. Evans,et al.  Low velocity transverse impact of filament-wound pipes : Part 1. Damage due to static and impact loads , 1992 .

[12]  Sarah E. Mouring,et al.  Modelling impact damage in marine composite panels , 2009 .

[13]  A. G. Gibson,et al.  The static and impact behaviour of polymer composite sandwich beams , 1994 .

[14]  Romesh C. Batra,et al.  Local slamming impact of sandwich composite hulls , 2009 .

[15]  Irini Djeran-Maigre,et al.  Shear modulus and damping ratio of grouted sand , 2004 .

[16]  A. Vautrin Mechanics of Sandwich Structures , 1998 .

[17]  Stephen R Reid,et al.  Damage, deformation and residual burst strength of filament-wound composite tubes subjected to impact or quasi-static indentation , 2000 .

[18]  Thomas R. Allen,et al.  Effects of Panel Stiffness on Slamming Responses of Composite Hull Panels , 2009 .

[19]  Gökdeniz Neşer,et al.  The effect of sea water exposure on the interfacial fracture of some sandwich systems in marine use , 2007 .

[20]  John P. Carter,et al.  A constitutive model for sand based on non-linear elasticity and the state parameter , 2009 .

[21]  W. G. Price,et al.  ON THE DYNAMICS OF SLAMMING , 1978 .

[22]  D. Hall,et al.  A review of the design and materials evaluation programme for the GRP/foam sandwich composite hull of the RAN minehunter , 1984 .

[23]  L. S. Sutherland,et al.  Effects of laminate thickness and reinforcement type on the impact behaviour of E-glass/polyester laminates , 1999 .

[24]  Y. Jack Weitsman,et al.  Sea-water effects on foam-cored composite sandwich lay-ups , 2004 .

[25]  Peter H. Bull,et al.  Compressive strength after impact of CFRP-foam core sandwich panels in marine applications , 2004 .

[26]  S Valsgard,et al.  RESPONSE OF FAST CRAFT HULL STRUCTURES TO SLAMMING LOADS , 1991 .

[27]  Dominique Choqueuse,et al.  Wave impact resistance of racing yacht composites , 2010 .

[28]  Christophe Baley,et al.  Improved impact performance of marine sandwich panels using through-thickness reinforcement: Experimental results , 2010 .

[29]  Odd M. Faltinsen,et al.  A Generalized Wagner Method for Three-Dimensional Slamming , 2005 .

[30]  Richard Downs-Honey,et al.  Slam testing of sandwich panels , 2006 .

[31]  Morteza Gharib,et al.  Experimental investigation of water slamming loads on panels , 2011 .

[32]  Jan Vierendeels,et al.  Large scale slamming tests on composite buoys for wave energy applications , 2009 .

[33]  Isaac M Daniel,et al.  Low velocity impact behavior of composite sandwich panels , 2005 .

[34]  Serge Abrate,et al.  Hydroelasticity in water-entry problems: Comparison between experimental and SPH results , 2012 .

[35]  Vikram Deshpande,et al.  The high strain rate response of PVC foams and end-grain balsa wood , 2008 .

[36]  Christophe Bouvet,et al.  Low velocity impact modelling in laminate composite panels with discrete interface elements , 2009 .

[37]  C. Atas,et al.  On the impact response of sandwich composites with cores of balsa wood and PVC foam , 2010 .

[38]  Romesh C. Batra,et al.  Corrigendum to “Local water slamming impact on sandwich composite hulls” [J. Fluids Struct. 27 (2011) 523–551] , 2013 .

[39]  F. Avilés,et al.  Mechanical degradation of foam-cored sandwich materials exposed to high moisture , 2010 .

[40]  K. Bathe Finite Element Procedures , 1995 .

[41]  Michael A. Davis,et al.  Wet deck slamming experiments with a FRP sandwich panel using a network of 16 fibre optic Bragg grating strain sensors , 2000 .

[42]  Kaushik Das,et al.  Local water slamming impact on sandwich composite hulls , 2011 .

[43]  Hoe I. Ling Soil stress-strain behavior: measurement, modeling and analysis : a collection of papers of the Geotechnical Symposium in Rome, March 16-17, 2006 , 2007 .

[44]  Brian Y. Lattimer,et al.  Review of fire structural modelling of polymer composites , 2009 .

[45]  F H Sellars Water Impact Loads , 1975 .

[46]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[47]  Magnus Burman,et al.  Tension, compression and shear fatigue of a closed cell polymer foam , 2009 .

[48]  Chad A. Ulven,et al.  Post-fire low velocity impact response of marine grade sandwich composites , 2006 .

[49]  Susana López-Querol,et al.  Generalized densification law for dry sand subjected to dynamic loading , 2006 .

[50]  Michele Meo,et al.  The response of honeycomb sandwich panels under low-velocity impact loading , 2005 .

[51]  L. S. Sutherland,et al.  Impact behaviour of typical marine composite laminates , 2005 .

[52]  Kunigal N. Shivakumar,et al.  Effects of the marine environment on the interfacial fracture toughness of PVC core sandwich composites , 2004 .

[53]  John Morton,et al.  The impact resistance of composite materials — a review , 1991 .

[54]  Luigi Nicolais,et al.  Wiley Encyclopedia of Composites , 2012 .

[55]  Erdogan Madenci,et al.  Experimental investigation of low-velocity impact characteristics of sandwich composites , 2000 .

[56]  Serge Abrate Impact on Composite Structures: Impact on Sandwich Structures , 1998 .

[57]  W. G. Price,et al.  A comparative study of the dynamic behaviour of a fast patrol boat travelling in rough seas , 1993 .

[58]  Peter Davies,et al.  Determination of Material Properties for Structural Sandwich Calculations: From Creep to Impact Loading , 1998 .

[59]  Stephen R Reid,et al.  Impact behaviour of fibre-reinforced composite materials and structures , 2000 .

[60]  Peter Davies,et al.  Damage development in thick composite tubes under impact loading and influence on implosion pressure: experimental observations , 2005 .

[61]  R. Mines,et al.  Numerical simulation of the progressive collapse of polymer composite sandwich beams under static loading , 2002 .

[62]  K. A. Feichtinger Test methods and performance of structural core materials-IIA. Strain rate dependence of shear properties , 1991 .

[63]  Wesley J. Cantwell,et al.  Interfacial fracture in sandwich laminates , 1999 .

[64]  Peter Middendorf,et al.  Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures , 2007 .

[65]  O. Gullberg,et al.  Design and construction of GRP sandwich ship hulls , 1990 .