Magnetic control: Switchable ultrahigh magnetic gradients at Fe3O4 nanoparticles to enhance solution-phase mass transport

[1]  R. Compton,et al.  Core–Shell Nanoparticles: Characterizing Multifunctional Materials beyond Imaging—Distinguishing and Quantifying Perfect and Broken Shells , 2015 .

[2]  Xi Chen,et al.  A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. , 2015, ACS nano.

[3]  M. Ghanei,et al.  Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode , 2015 .

[4]  Q. Wei,et al.  A label-free amperometric immunosensor for the detection of carcinoembryonic antigen based on novel magnetic carbon and gold nanocomposites , 2015 .

[5]  M. Pumera,et al.  Direct voltammetric determination of redox-active iron in carbon nanotubes. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  R. Nesti,et al.  Microwave characterization of magnetically hard and soft ferrite nanoparticles in K-band , 2014 .

[7]  V. Sahore,et al.  Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses. , 2014, Analytical chemistry.

[8]  R. Compton,et al.  A Critical Evaluation of the Interpretation of Electrocatalytic Nanoimpacts , 2014 .

[9]  R. Compton,et al.  Chemical interactions between silver nanoparticles and thiols: a comparison of mercaptohexanol against cysteine , 2014, Science China Chemistry.

[10]  J. Coey,et al.  Magnetic fields in electrochemistry: The Kelvin force. A mini-review , 2014 .

[11]  J. M. D. Coey,et al.  Magnetic fields in electrochemistry: The Lorentz force. A mini-review , 2014 .

[12]  R. Compton,et al.  A proof-of-concept – Using pre-created nucleation centres to improve the limit of detection in anodic stripping voltammetry , 2014 .

[13]  Henrik Ekström,et al.  COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review , 2014 .

[14]  Liang Li,et al.  Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3 + NaCl solution , 2014 .

[15]  Bin Du,et al.  Label-free immunosensor for the detection of kanamycin using Ag@Fe₃O₄ nanoparticles and thionine mixed graphene sheet. , 2013, Biosensors & bioelectronics.

[16]  R. Compton,et al.  Coulometric sizing of nanoparticles: Cathodic and anodic impact experiments open two independent routes to electrochemical sizing of Fe3O4 nanoparticles , 2013, Nano Research.

[17]  Jiajun Li,et al.  Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. , 2013, ACS nano.

[18]  Yu Zhang,et al.  Quasi-spherical silver nanoparticles: aqueous synthesis and size control by the seed-mediated Lee-Meisel method. , 2013, Journal of colloid and interface science.

[19]  J. Czarske,et al.  Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields. , 2013, Analytical chemistry.

[20]  S. Majetich,et al.  Magnetic nanoparticles , 2013, Handbook of Magnetism and Magnetic Materials.

[21]  J. Fröhlich,et al.  Comment on "Magnetic structuring of electrodeposits". , 2012, Physical review letters.

[22]  K. Eckert,et al.  Enrichment of Paramagnetic Ions from Homogeneous Solutions in Inhomogeneous Magnetic Fields. , 2012, The journal of physical chemistry letters.

[23]  A. Fetisov,et al.  Anomalous currents under cyclic polarization of magnetite electrode in acidic medium , 2012, Russian Journal of Electrochemistry.

[24]  C. Amatore,et al.  Importance of correct prediction of initial concentrations in voltammetric scans: contrasting roles of thermodynamics, kinetics, and natural convection. , 2012, Analytical chemistry.

[25]  R. Compton,et al.  Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. , 2012, Chemical communications.

[26]  J. Coey,et al.  Magnetic structuring of electrodeposits. , 2011, Physical review letters.

[27]  O. Timoshenkova,et al.  Bismuth nanoparticles electrooxidation: theory and experiment , 2011 .

[28]  L. Schultz,et al.  Electrodeposition of separated 3D metallic structures by pulse-reverse plating in magnetic gradient fields , 2011 .

[29]  Christian Cierpka,et al.  In situ analysis of three-dimensional electrolyte convection evolving during the electrodeposition of copper in magnetic gradient fields. , 2011, Analytical chemistry.

[30]  A. Murzakaev,et al.  Silver nanoparticles electrooxidation: theory and experiment , 2011, Journal of Solid State Electrochemistry.

[31]  L. Schultz,et al.  Studies on the patterning effect of copper deposits in magnetic gradient fields , 2010 .

[32]  J. Fröhlich,et al.  On the action of magnetic gradient forces in micro-structured copper deposition , 2010 .

[33]  C. Amatore,et al.  Difference between ultramicroelectrodes and microelectrodes: influence of natural convection. , 2010, Analytical chemistry.

[34]  Ahsan Munir,et al.  Numerical analysis of a magnetic nanoparticle-enhanced microfluidic surface-based bioassay , 2010 .

[35]  I. Fritsch,et al.  Magnetic fields for fluid motion. , 2010, Analytical chemistry.

[36]  J. Fröhlich,et al.  On the origin of horizontal counter-rotating electrolyte flow during copper magnetoelectrolysis , 2010 .

[37]  L. Schultz,et al.  Effects of well-defined magnetic field gradients on the electrodeposition of copper and bismuth , 2009 .

[38]  J. Coey,et al.  Enhanced Oxygen Reduction at Composite Electrodes Producing a Large Magnetic Gradient , 2009 .

[39]  L. Schultz,et al.  Desorption of hydrogen from an electrode surface under influence of an external magnetic field – In-situ microscopic observations , 2009 .

[40]  Andreas Bund,et al.  On the 3D character of the magnetohydrodynamic effect during metal electrodeposition in cuboid cells , 2008 .

[41]  M. Arenz,et al.  Measurement of oxygen reduction activities via the rotating disc electrode method : from Pt model surfaces to carbon-supported high surface area catalysts. , 2008 .

[42]  O. Gorobets,et al.  Nickel Electrodeposition under Influence of Constant Homogeneous and High-Gradient Magnetic Field , 2008 .

[43]  C. O'connor,et al.  Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols , 2007 .

[44]  J. Coey,et al.  The magnetic concentration gradient force—Is it real? , 2007 .

[45]  Philip N. Ross,et al.  Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability , 2007, Science.

[46]  Philippe Robert,et al.  Recent advances in iron oxide nanocrystal technology for medical imaging. , 2006, Advanced drug delivery reviews.

[47]  L. B. Wang,et al.  Numerical simulation of enhancement of mass transfer in the cathode electrode of a PEM fuel cell by magnet particles deposited in the cathode-side catalyst layer , 2005 .

[48]  Martin Pumera,et al.  Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode , 2005 .

[49]  Mary Elizabeth Williams,et al.  Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding , 2004 .

[50]  A. Bund,et al.  Magnetic field effects in electrochemical reactions , 2003 .

[51]  H. White,et al.  Microscale Confinement of Paramagnetic Molecules in Magnetic Field Gradients Surrounding Ferromagnetic Microelectrodes , 2001 .

[52]  N. Leventis,et al.  Magnetohydrodynamic electrochemistry in the field of Nd-Fe-B magnets. Theory, experiment, and application in self-powered flow delivery systems. , 2001, Analytical chemistry.

[53]  G. J. Berkel,et al.  A Thin‐Layer Electrochemical Flow Cell Coupled On‐Line with Electrospray‐Mass Spectrometry for the Study of Biological Redox Reactions , 1999 .

[54]  H. White,et al.  Electrochemically Generated Magnetic Forces. Enhanced Transport of a Paramagnetic Redox Species in Large, Nonuniform Magnetic Fields , 1998 .

[55]  F. Marken,et al.  Voltammetry in the presence of ultrasound: the limit of acoustic streaming induced diffusion layer thinning and the effect of solvent viscosity , 1996 .

[56]  R. Compton,et al.  Voltammetry in the presence of ultrasound: mass transport effects , 1996 .

[57]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[58]  D. Muir,et al.  A comparative study of the oxidative and reductive dissolution of magnetite in acidified CuSO4-acetonitrile-H2O and CuCl2−NaCl−H2O leach solutions , 1986 .

[59]  R. Compton,et al.  Channel and tubular electrodes , 1986 .

[60]  R. Wightman,et al.  Electroanalytical voltammetry in flowing solutions , 1986 .

[61]  F. Takahashi,et al.  The MHD effect and its relaxation process on electric current in the electrolysis of ferricyanide reduction and ferrocyanide oxidation , 1983 .

[62]  M. Rákoš,et al.  Magnetic properties of two complex ferric paramagnetics , 1965 .