Topology optimization in thermal-fluid flow using the lattice Boltzmann method

This paper proposes a topology optimization method for thermal-fluid flow problems using the lattice Boltzmann method (LBM). The design sensitivities are derived based on the adjoint lattice Boltzmann method (ALBM), whose basic idea is that the adjoint problem is first formulated using a continuous adjoint approach, and the adjoint problem is then solved using the LBM. In this paper, the discrete velocity Boltzmann equation, in which only the particle velocities are discretized, is introduced to the ALBM to deal with the various boundary conditions in the LBM. The novel sensitivity analysis is applied in two flow channel topology optimization problems: 1) a pressure drop minimization problem, and 2) a heat exchange maximization problem. Several numerical examples are provided to confirm the utility of the proposed method.

[1]  Ole Sigmund,et al.  Topology optimization of microfluidic mixers , 2009 .

[2]  D. Martínez,et al.  On boundary conditions in lattice Boltzmann methods , 1996 .

[3]  James K. Guest,et al.  Topology Optimization of Fixed-Geometry Fluid Diodes , 2015 .

[4]  K. Maute,et al.  Topology optimization of flexible micro-fluidic devices , 2010 .

[5]  K. Maute,et al.  Topology optimization of flow domains using the lattice Boltzmann method , 2007 .

[6]  Takaji Inamuro,et al.  A NON-SLIP BOUNDARY CONDITION FOR LATTICE BOLTZMANN SIMULATIONS , 1995, comp-gas/9508002.

[7]  Gudrun Thäter,et al.  Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods , 2013, Comput. Math. Appl..

[8]  Mathias J. Krause,et al.  Fluid Flow Simulation and Optimisation with Lattice Boltzmann Methods on High Performance Computers - Application to the Human Respiratory System , 2010 .

[9]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[10]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[11]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[12]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[13]  K. Maute,et al.  Levelset based fluid topology optimization using the extended finite element method , 2012 .

[14]  Yoshihiro Kanno,et al.  A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method , 2015 .

[15]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[16]  L. H. Olesen,et al.  A high‐level programming‐language implementation of topology optimization applied to steady‐state Navier–Stokes flow , 2004, physics/0410086.

[17]  Takaji Inamuro,et al.  A Lattice Boltzmann Method for a Binary Miscible Fluid Mixture and Its Application to a Heat-Transfer Problem , 2002 .

[18]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[19]  A. Evgrafov Topology optimization of slightly compressible fluids , 2006 .

[20]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[21]  James K. Guest,et al.  Level set topology optimization of fluids in Stokes flow , 2009 .

[22]  Zhenyu Liu,et al.  Topology Optimization Theory for Laminar Flow , 2018 .

[23]  Q. Zou,et al.  On pressure and velocity boundary conditions for the lattice Boltzmann BGK model , 1995, comp-gas/9611001.

[24]  O. Pironneau On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.

[25]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[26]  K. Maute,et al.  A parallel Schur complement solver for the solution of the adjoint steady-state lattice Boltzmann equations: application to design optimisation , 2008 .

[27]  Robert S. Bernard,et al.  Boundary conditions for the lattice Boltzmann method , 1996 .

[28]  James K. Guest,et al.  Topology optimization of creeping fluid flows using a Darcy–Stokes finite element , 2006 .

[29]  Wei Shyy,et al.  Lattice Boltzmann Method for 3-D Flows with Curved Boundary , 2000 .

[30]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[31]  K. Maute,et al.  Level set topology optimization of scalar transport problems , 2015 .

[32]  Ping Zhang,et al.  Topology optimization of unsteady incompressible Navier-Stokes flows , 2011, J. Comput. Phys..

[33]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[34]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[35]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[36]  Tsuyoshi Nomura,et al.  Topology optimization for fluid–thermal interaction problems under constant input power , 2013 .

[37]  Takaji Inamuro,et al.  Lattice Boltzmann simulations for flow and heat/mass transfer problems in a three‐dimensional porous structure , 2003 .

[38]  Takayuki Yamada,et al.  Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions , 2014, J. Comput. Phys..

[39]  Kurt Maute,et al.  Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method , 2012 .

[40]  Martin Geier,et al.  Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method , 2014, Comput. Math. Appl..

[41]  Qisu Zou,et al.  N ov 1 99 6 On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model , 2008 .

[42]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[43]  P. Lallemand,et al.  Adjoint lattice Boltzmann equation for parameter identification , 2006 .

[44]  Takayuki Yamada,et al.  A topology optimization method for a coupled thermal–fluid problem using level set boundary expressions , 2015 .

[45]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[46]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[47]  S. Succi The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2001 .

[48]  Olivier Pironneau,et al.  Applied Shape Optimization for Fluids, Second Edition , 2009, Numerical mathematics and scientific computation.

[49]  Skordos,et al.  Initial and boundary conditions for the lattice Boltzmann method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Pierre Sagaut,et al.  An adjoint-based lattice Boltzmann method for noise control problems , 2014, J. Comput. Phys..