Liquid‐filled canyons on Titan

In May 2013 the Cassini RADAR altimeter observed channels in Vid Flumina, a drainage network connected to Titan's second largest hydrocarbon sea, Ligeia Mare. Analysis of these altimeter echoes shows that the channels are located in deep (up to ~570 m), steep‐sided, canyons and have strong specular surface reflections that indicate they are currently liquid filled. Elevations of the liquid in these channels are at the same level as Ligeia Mare to within a vertical precision of about 0.7 m, consistent with the interpretation of drowned river valleys. Specular reflections are also observed in lower order tributaries elevated above the level of Ligeia Mare, consistent with drainage feeding into the main channel system.

[1]  Roberto Seu,et al.  Radar Sounding Using the Cassini Altimeter: Waveform Modeling and Monte Carlo Approach for Data Inversion of Observations of Titan's Seas , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[2]  T. Farr,et al.  Constraining the physical properties of Titan’s empty lake basins using nadir and off-nadir Cassini RADAR backscatter , 2016 .

[3]  H. Zebker,et al.  The bathymetry of a Titan sea , 2014 .

[4]  C. Notarnicola,et al.  Titan dune heights retrieval by using Cassini Radar Altimeter , 2014 .

[5]  H. Zebker,et al.  Surface of Ligeia Mare, Titan, from Cassini altimeter and radiometer analysis , 2014 .

[6]  J. Perron,et al.  Morphology of fluvial networks on Titan: Evidence for structural control , 2013 .

[7]  Roberto Orosei,et al.  Quantitative analysis of Mars surface radar reflectivity at 20 MHz , 2012 .

[8]  Jani Radebaugh,et al.  Regional variations among Titan's dunes: Belet versus Fensal dune fields , 2010 .

[9]  Luciano Iess,et al.  Gravity Field, Shape, and Moment of Inertia of Titan , 2010, Science.

[10]  H. Zebker,et al.  Smoothness of Titan's Ontario Lacus: Constraints from Cassini RADAR specular reflection data , 2009 .

[11]  Giovanni Alberti,et al.  A Waveform Model for Near-Nadir Radar Altimetry Applied to the Cassini Mission to Titan , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Howard A. Zebker,et al.  Analysis and interpretation of Cassini Titan radar altimeter echoes , 2009 .

[13]  W. Ryan Decoding the Mediterranean salinity crisis , 2009 .

[14]  Randolph L. Kirk,et al.  Fluvial channels on Titan: Initial Cassini RADAR observations , 2008 .

[15]  Randolph L. Kirk,et al.  Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith , 2008 .

[16]  J. Lunine,et al.  The methane cycle on Titan , 2008 .

[17]  Randolph L. Kirk,et al.  The lakes and seas of Titan , 2007 .

[18]  R. Kirk,et al.  The lakes of Titan , 2006, Nature.

[19]  R. Kirk,et al.  Radar: The Cassini Titan Radar Mapper , 2004 .

[20]  Mahta Moghaddam,et al.  Cassini Radio Detection and Ranging (RADAR): Earth and Venus observations , 2001 .

[21]  L. Marinangeli,et al.  Fluid dynamics of liquids on Titans surface , 1998 .

[22]  J. Lunine,et al.  Erosion on Titan: Past and Present , 1996 .

[23]  R. Seu,et al.  Surface backscattering evaluation by means of the facet model for remote sensing applications , 1996 .

[24]  A. Coradini,et al.  The radar system for the exploration of Titan , 1992 .

[25]  Ignacio Rodriguez-Iturbe,et al.  A physical explanation of an observed link area‐slope relationship , 1991 .

[26]  C. Rapley,et al.  Saturation effects in the Seasat altimeter receiver , 1987 .

[27]  T. Hagfors,et al.  Backscattering from an undulating surface with applications to radar returns from the Moon , 1964 .

[28]  A. N. Strahler Quantitative analysis of watershed geomorphology , 1957 .

[29]  R. Kirk,et al.  Transient surface liquid in Titan’s polar regions from Cassini , 2011 .

[30]  R. Orosei,et al.  The Processing of Altimetric Data (PAD) System for Cassini RADAR. , 2007 .