Polymorphic regenerated silk fibers assembled through bioinspired spinning

[1]  Wenwen Huang,et al.  Design and function of biomimetic multilayer water purification membranes , 2017, Science Advances.

[2]  G. Plaza,et al.  Production of High Performance Bioinspired Silk Fibers by Straining Flow Spinning. , 2017, Biomacromolecules.

[3]  Chris Holland,et al.  Progress and Trends in Artificial Silk Spinning: A Systematic Review. , 2017, ACS biomaterials science & engineering.

[4]  Jinrong Yao,et al.  Insights into Silk Formation Process: Correlation of Mechanical Properties and Structural Evolution during Artificial Spinning of Silk Fibers. , 2016, ACS biomaterials science & engineering.

[5]  K. Livi,et al.  Lignocellulose Fiber- and Welded Fiber- Supports for Palladium-Based Catalytic Hydrogenation: A Natural Fiber Welding Application for Water Treatment , 2016 .

[6]  Markus J Buehler,et al.  Liquid Exfoliated Natural Silk Nanofibrils: Applications in Optical and Electrical Devices , 2016, Advanced materials.

[7]  Markus J Buehler,et al.  Printing of stretchable silk membranes for strain measurements. , 2016, Lab on a chip.

[8]  D. Kaplan,et al.  Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes. , 2016, Nano letters.

[9]  Dong Wook Kim,et al.  Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. , 2015, Biomaterials.

[10]  Yaopeng Zhang,et al.  Role of humidity on the structures and properties of regenerated silk fibers , 2015 .

[11]  David L. Kaplan,et al.  Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres , 2015, Nature Communications.

[12]  Markus J. Buehler,et al.  Structural optimization of 3D-printed synthetic spider webs for high strength , 2015, Nature Communications.

[13]  D. Shah Natural fibre composites: Comprehensive Ashby-type materials selection charts , 2014 .

[14]  P. Trulove,et al.  Natural Fiber Welded Composite Yarns , 2014 .

[15]  P. Trulove,et al.  Laser Induced Natural Fiber Welding of Cellulosic Substrates , 2014 .

[16]  B. Zuo,et al.  A novel route to prepare dry-spun silk fibers from CaCl2–formic acid solution , 2014 .

[17]  R. Mezzenga,et al.  Modulating Materials by Orthogonally Oriented β‐Strands: Composites of Amyloid and Silk Fibroin Fibrils , 2014, Advanced materials.

[18]  Mengjie Sun,et al.  Tough silk fibers prepared in air using a biomimetic microfluidic chip. , 2014, International journal of biological macromolecules.

[19]  Gangqin Xu,et al.  What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. , 2013, Soft matter.

[20]  Kenichi Nakajima,et al.  Colored Fluorescent Silk Made by Transgenic Silkworms , 2013 .

[21]  Xi-Qiao Feng,et al.  Hierarchical chirality transfer in the growth of Towel Gourd tendrils , 2013, Scientific Reports.

[22]  Yaopeng Zhang,et al.  A simple process for dry spinning of regenerated silk fibroin aqueous solution , 2013 .

[23]  K. Lian,et al.  Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics , 2013 .

[24]  Steven W. Cranford Increasing silk fibre strength through heterogeneity of bundled fibrils , 2013, Journal of The Royal Society Interface.

[25]  Z. Shao,et al.  Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy. , 2013, Biomacromolecules.

[26]  Z. Shao,et al.  Conformation transition kinetics and spinnability of regenerated silk fibroin with glycol, glycerol and polyethylene glycol , 2012 .

[27]  Hui-li Shao,et al.  The structure–property relationships of artificial silk fabricated by dry-spinning process , 2012 .

[28]  Xiaodong Li,et al.  Towards Textile Energy Storage from Cotton T‐Shirts , 2012, Advanced materials.

[29]  Hu Tao,et al.  Silk Materials – A Road to Sustainable High Technology , 2012, Advanced materials.

[30]  Markus J Buehler,et al.  Molecular mechanics of silk nanostructures under varied mechanical loading , 2012, Biopolymers.

[31]  Hui-li Shao,et al.  Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: Post-treatment agent and method , 2012 .

[32]  Manuel Elices,et al.  Correlation between processing conditions, microstructure and mechanical behavior in regenerated silkworm silk fibers , 2012 .

[33]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[34]  P. Trulove,et al.  Process variables that control natural fiber welding: time, temperature, and amount of ionic liquid , 2012, Cellulose.

[35]  Markus J Buehler,et al.  Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. , 2011, Nano letters.

[36]  Hui-li Shao,et al.  Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution , 2011 .

[37]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[38]  Z. Shao,et al.  Synchrotron FTIR microspectroscopy of single natural silk fibers. , 2011, Biomacromolecules.

[39]  Hui-li Shao,et al.  Posttreatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution , 2011 .

[40]  Andrew M. Smith,et al.  Decoding the secrets of spider silk , 2011 .

[41]  P. Trulove,et al.  Process Variables that Control Natural Fiber Welding , 2010, ECS Transactions.

[42]  Thomas Scheibel,et al.  Composite materials based on silk proteins , 2010 .

[43]  David L. Kaplan,et al.  New Opportunities for an Ancient Material , 2010, Science.

[44]  Alberto Redaelli,et al.  Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. , 2010, Nano letters.

[45]  P. Trulove,et al.  Macromol. Mater. Eng. 5/2010 , 2010 .

[46]  M. Buehler,et al.  Molecular dynamics simulation of the α-helix to β-sheet transition in coiled protein filaments: evidence for a critical filament length scale. , 2010, Physical review letters.

[47]  M. Buehler,et al.  Molecular Dynamics Simulation of the alpha-Helix to beta-Sheet Transition in Coiled Protein Filaments: Evidence for a Critical Filament Length Scale , 2010 .

[48]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[49]  Z. Shao,et al.  Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters. , 2010, Biomacromolecules.

[50]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[51]  T. Asakura,et al.  Mechanical Properties of Regenerated Bombyx mori Silk Fibers and Recombinant Silk Fibers Produced by Transgenic Silkworms , 2010, Journal of biomaterials science. Polymer edition.

[52]  Z. Shao,et al.  Animal silks: their structures, properties and artificial production. , 2009, Chemical communications.

[53]  Manuel Elices,et al.  Old Silks Endowed with New Properties , 2009 .

[54]  Z. Shao,et al.  Silk Fibers Extruded Artificially from Aqueous Solutions of Regenerated Bombyx mori Silk Fibroin are Tougher than their Natural Counterparts , 2009 .

[55]  T. Lefèvre,et al.  Attenuated Total Reflection Infrared Spectroscopy: An Efficient Technique to Quantitatively Determine the Orientation and Conformation of Proteins in Single Silk Fibers , 2008, Applied spectroscopy.

[56]  G. Plaza,et al.  Effect of water on Bombyx mori regenerated silk fibers and its application in modifying their mechanical properties , 2008 .

[57]  Malte Ogurreck,et al.  Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales. , 2008, Physical review letters.

[58]  G. Plaza,et al.  Influence of the draw ratio on the tensile and fracture behavior of NMMO regenerated silk fibers , 2007 .

[59]  Fang Xie,et al.  Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution. , 2006, International journal of biological macromolecules.

[60]  Yaopeng Zhang,et al.  Studies on spinning and rheological behaviors of regenerated silk fibroin/N-methylmorpholine-N-oxide·H2O solutions , 2005 .

[61]  G. Plaza,et al.  The effect of spinning forces on spider silk properties , 2005, Journal of Experimental Biology.

[62]  Z. Shao,et al.  Extended wet-spinning can modify spider silk properties. , 2005, Chemical communications.

[63]  P. Zhou,et al.  Toughness of Spider Silk at High and Low Temperatures , 2005 .

[64]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[65]  John M Gosline,et al.  Consequences of forced silking. , 2004, Biomacromolecules.

[66]  David L. Kaplan,et al.  Mechanism of silk processing in insects and spiders , 2003, Nature.

[67]  Chenhua Zhao,et al.  Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro‐iso‐propanol solvent system , 2003, Biopolymers.

[68]  Fritz Vollrath,et al.  Materials: Surprising strength of silkworm silk , 2002, Nature.

[69]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[70]  Fritz Vollrath,et al.  In Situ X-ray Diffraction during Forced Silking of Spider Silk , 1999 .

[71]  F Vollrath,et al.  Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. , 1999, International journal of biological macromolecules.

[72]  C. Viney,et al.  Spider major ampullate silk (drag line): smart composite processing based on imperfect crystals , 1997 .

[73]  Charles W. Bock,et al.  Calcium Ion Coordination: A Comparison with That of Beryllium, Magnesium, and Zinc , 1996 .

[74]  Y. Termonia Molecular modeling of spider silk elasticity , 1994 .

[75]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[76]  D. Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[77]  Markus J Buehler,et al.  What's Inside the Box? – Length‐Scales that Govern Fracture Processes of Polymer Fibers , 2014, Advanced materials.

[78]  P. Trulove,et al.  Natural Fiber Welding: Ionic Liquid Facilitated Biopolymer Mobilization and Reorganization , 2012 .

[79]  T. Asakura,et al.  Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori. , 2007, Biomacromolecules.

[80]  Juming Yao,et al.  Artificial Spinning and Characterization of Silk Fiber from Bombyx mori Silk Fibroin in Hexafluoroacetone Hydrate , 2002 .

[81]  M. James,et al.  Crystal structures of the helix-loop-helix calcium-binding proteins. , 1989, Annual review of biochemistry.