A review on accelerating scientific computations using the Conjugate Gradient method
暂无分享,去创建一个
[1] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[2] Xu Guo,et al. Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs , 2013, Comput. Vis. Sci..
[3] Marcel van der Veen. Sparse matrix vector multiplication on a field programmable gate array , 2007 .
[4] Satoshi Matsuoka,et al. Fast Conjugate Gradients with Multiple GPUs , 2009, ICCS.
[5] I. C. Decker,et al. Parallel implementation of a power system dynamic simulation methodology using the conjugate gradient method , 1991 .
[6] M. J. D. Powell,et al. Restart procedures for the conjugate gradient method , 1977, Math. Program..
[7] Jing Hu,et al. Solution of partial differential equations using reconfigurable computing , 2011 .
[8] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[9] T. Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .
[10] Steve Poole,et al. An Implementation of the Conjugate Gradient Algorithm on FPGAs , 2008, 2008 16th International Symposium on Field-Programmable Custom Computing Machines.
[11] Behzad Mahdavikhah Seyed Mehrabad. A Multiple-FPGA Parallel Computing Architecture for Real-time Simulation of Deformable Objects , 2009 .
[12] Viktor K. Prasanna,et al. A Hybrid Approach for Mapping Conjugate Gradient onto an FPGA-Augmented Reconfigurable Supercomputer , 2006, 2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.
[13] A. Sameh,et al. The behavior of conjugate gradient algorithms on a multivector processor with a hierarchical memory , 1988 .
[14] Sinan Shi,et al. GPU Implementation of Iterative Solvers in Numerical Weather Predicting Models , 2013 .
[15] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[16] Oleg Maslennikov,et al. FPGA Implementation of the Conjugate Gradient Method , 2005, PPAM.
[17] Shanq-Jang Ruan,et al. Sparse matrix-vector multiplication on network-on-chip , 2010 .
[18] Thomas Boorman,et al. Non-Preconditioned Conjugate Gradient on Cell and FPGA Based Hybrid Supercomputer Nodes , 2009, 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines.
[19] David Gregg,et al. High Performance Scientific Computing Using FPGAs with IEEE Floating Point and Logarithmic Arithmetic for Lattice QCD , 2006, 2006 International Conference on Field Programmable Logic and Applications.
[20] Wei Zhang,et al. Portable and scalable FPGA-based acceleration of a direct linear system solver , 2008, 2008 International Conference on Field-Programmable Technology.
[21] Kang C. Jea,et al. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .
[22] Vincent Heuveline,et al. Employing a High-Level Language for Porting Numerical Applications to Reconfigurable Hardware , 2011 .
[23] Yan Zhang,et al. FPGA vs. GPU for sparse matrix vector multiply , 2009, 2009 International Conference on Field-Programmable Technology.
[24] Gene H. Golub,et al. Numerical solution of nonlinear elliptic partial differential equations by a generalized conjugate gradient method , 1976, Computing.
[25] Siam Rfview,et al. CONVERGENCE CONDITIONS FOR ASCENT METHODS , 2016 .
[26] J. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .
[27] James Demmel,et al. Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply , 2002, ACM/IEEE SC 2002 Conference (SC'02).
[28] George A. Constantinides,et al. A High Throughput FPGA-Based Floating Point Conjugate Gradient Implementation for Dense Matrices , 2010, TRETS.
[29] Radoslaw Pytlak. Preconditioned conjugate gradient algorithms with column scaling , 2008, 2008 47th IEEE Conference on Decision and Control.
[30] P. Wolfe. Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .
[31] Rakesh Kumar,et al. A hardware acceleration technique for gradient descent and conjugate gradient , 2011, 2011 IEEE 9th Symposium on Application Specific Processors (SASP).
[32] Aljoscha Smolic,et al. Evaluation and FPGA Implementation of Sparse Linear Solvers for Video Processing Applications , 2013, IEEE Transactions on Circuits and Systems for Video Technology.
[33] T. Manteuffel,et al. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .
[34] G.J.M. Smit,et al. Implementing the conjugate gradient algorithm on multi-core systems , 2007, 2007 International Symposium on System-on-Chip.
[35] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[36] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[37] Artyom Petrenko. Accelerating an iterative Helmholtz solver using reconfigurable hardware , 2014 .
[38] Robert Strzodka,et al. Pipelined Mixed Precision Algorithms on FPGAs for Fast and Accurate PDE Solvers from Low Precision Components , 2006, 2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.
[39] Torstein Habbestad. An FPGA-based implementation of the Conjugate Gradient Method used to solve Large Dense Systems of Linear Equations , 2011 .
[40] André DeHon,et al. Floating-point sparse matrix-vector multiply for FPGAs , 2005, FPGA '05.
[41] Warren J. Gross,et al. FPGA architecture and implementation of sparse matrix-vector multiplication for the finite element method , 2008, Comput. Phys. Commun..
[42] S. Mitter,et al. The conjugate gradient method for optimal control problems , 1967 .
[43] P. Wolfe. Convergence Conditions for Ascent Methods. II , 1969 .