Compliance current dominates evolution of NiSi2 defect size in Ni/dielectric/Si RRAM devices

[1]  C.L. Ghosh,et al.  GaAs MESFET's with Ga1-xAlxAs buffer layers , 1984, IEEE Electron Device Letters.

[2]  J. E. E. Baglin,et al.  Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds , 1984 .

[3]  M.-A. Nicolet,et al.  Utilization of NiSi2as an interconnect material for VLSI , 1984, IEEE Electron Device Letters.

[4]  Shirshak K. Dhali,et al.  Plasma oxidation of SO2 , 1990 .

[5]  A. Lodder,et al.  Electromigration in transition metals. II. Light interstitials in Cu, Ag, Ni, Pd, Al, V, Nb and Ta , 1991 .

[6]  B. Svensson,et al.  Nickel atomic diffusion in amorphous silicon , 1995 .

[7]  Klaus Bohmhammel,et al.  Optimization of thermodynamic data of the Ni–Si system , 1999 .

[8]  Karen Maex,et al.  In situ transmission electron microscopy study of Ni silicide phases formed on (001) Si active lines , 2001 .

[9]  C. Gerber,et al.  Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  Masako Yudasaka,et al.  Structure of single-wall carbon nanotubes purified and cut using polymer , 2002 .

[12]  G. Dewey,et al.  High-performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC=0.5V) logic applications , 2008, 2008 IEEE International Electron Devices Meeting.

[13]  André Vantomme,et al.  On the thermal expansion coefficient of CoSi2 and NiSi2 , 2009 .

[14]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[15]  Nagarajan Raghavan,et al.  Resistive switching in NiSi gate metal-oxide-semiconductor transistors , 2010 .

[16]  Wen-Wei Wu,et al.  Heterogeneous and Homogeneous Nucleation of Epitaxial NiSi2 in [110] Si Nanowires , 2011 .

[17]  T. Kauerauf,et al.  Very Low Reset Current for an RRAM Device Achieved in the Oxygen-Vacancy-Controlled Regime , 2011, IEEE Electron Device Letters.

[18]  James M. Tour,et al.  In situ imaging of the conducting filament in a silicon oxide resistive switch , 2012, Scientific reports.

[19]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[20]  L. Larcher,et al.  Leakage Current-Forming Voltage Relation and Oxygen Gettering in HfOx RRAM Devices , 2013, IEEE Electron Device Letters.

[21]  Kinam Kim,et al.  In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure , 2013, Nature Communications.

[22]  D. Ielmini,et al.  Set Variability and Failure Induced by Complementary Switching in Bipolar RRAM , 2013, IEEE Electron Device Letters.

[23]  S. Koswatta,et al.  GIDL in Doped and Undoped FinFET Devices for Low-Leakage Applications , 2013, IEEE Electron Device Letters.

[24]  Lih-Juann Chen,et al.  Dynamic evolution of conducting nanofilament in resistive switching memories. , 2013, Nano letters.

[25]  L. Gu,et al.  In situ TEM Observation of Resistance Switching in Titanate Based Device , 2014, Scientific Reports.

[26]  Xing Wu,et al.  Evolution of Filament Formation in Ni/HfO2/SiOx/Si‐Based RRAM Devices , 2015 .