PBS-calculus: A Graphical Language for Quantum-Controlled Computations

We introduce the PBS-calculus to represent and reason on quantum computations involving polarising beam splitters (PBS for short). PBS-diagrams can be used to represent various schemes including quantum-controlled computations, which are known to have multiple computational and communication advantages over classically ordered models like quantum circuits. The PBS-calculus is equipped with an equational theory, which is proved to be sound and complete: two diagrams are representing the same quantum evolution if and only if one can be transformed into the other using the rules of the PBS-calculus. Moreover, we show that the equational theory is minimal. Finally, we show that any PBS-diagram involving only unitary matrices can be transformed into a diagram without feedback loop.

[1]  Stefano Facchini,et al.  Quantum Circuits for the Unitary Permutation Problem , 2014, TAMC.

[2]  Dominic R. Verity,et al.  Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  G. Chiribella Perfect discrimination of no-signalling channels via quantum superposition of causal structures , 2011, 1109.5154.

[4]  C. G. Peterson,et al.  Long-distance quantum key distribution in optical fibre , 2006, quant-ph/0607177.

[5]  Mateus Araújo,et al.  Computational advantage from quantum-controlled ordering of gates. , 2014, Physical review letters.

[6]  Sae Woo Nam,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.

[7]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[8]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[9]  Philip Walther,et al.  Experimental verification of an indefinite causal order , 2016, Science Advances.

[10]  A. Kissinger,et al.  ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity , 2018, QPL.

[11]  Amar Hadzihasanovic,et al.  The algebra of entanglement and the geometry of composition , 2017, ArXiv.

[12]  vCaslav Brukner,et al.  Quantum superposition of the order of parties as a communication resource , 2015, 1508.07840.

[13]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[14]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[15]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[16]  Filippo Bonchi,et al.  Interacting Hopf Algebras , 2014, ArXiv.

[17]  B. Valiron,et al.  Quantum computations without definite causal structure , 2009, 0912.0195.

[18]  Giovanni de Felice,et al.  A diagrammatic calculus of fermionic quantum circuits , 2019, Log. Methods Comput. Sci..

[19]  G. D’Ariano,et al.  Quantum computation with programmable connections between gates , 2011, 1109.5987.

[20]  Filippo Bonchi,et al.  Diagrammatic algebra: from linear to concurrent systems , 2019, Proc. ACM Program. Lang..

[21]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[22]  Yuan Feng,et al.  Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs , 2014, ArXiv.

[23]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[24]  C. Branciard,et al.  Communication through coherent control of quantum channels , 2018, Quantum.

[25]  Simon Perdrix,et al.  A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.

[26]  Philip Walther,et al.  Experimental superposition of orders of quantum gates , 2014, Nature Communications.

[27]  Mateus Araújo,et al.  Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication. , 2016, Physical review letters.

[28]  WEAK BRAIDED MONOIDAL CATEGORIES AND THEIR HOMOTOPY COLIMITS , 2014, 1410.6738.

[29]  Jonathan Grattage A functional quantum programming language , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[30]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[31]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[32]  Gilles Dowek,et al.  Lineal: A linear-algebraic Lambda-calculus , 2017, Log. Methods Comput. Sci..

[33]  Filippo Bonchi,et al.  Graphical Affine Algebra , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[34]  Masato Koashi,et al.  Probabilistic manipulation of entangled photons , 2001 .

[35]  Juliana Kaizer Vizzotto,et al.  From Symmetric Pattern-Matching to Quantum Control , 2018, FoSSaCS.

[36]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[37]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[38]  R. Vogt,et al.  Homotopy Colimits of Algebras Over Cat-Operads and Iterated Loop Spaces , 2011, 1109.0265.

[39]  Filippo Bonchi Interacting Hopf Algebras: the Theory of Linear Systems (text not included) , 2019, ICTCS.