暂无分享,去创建一个
[1] Stefano Facchini,et al. Quantum Circuits for the Unitary Permutation Problem , 2014, TAMC.
[2] Dominic R. Verity,et al. Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] G. Chiribella. Perfect discrimination of no-signalling channels via quantum superposition of causal structures , 2011, 1109.5154.
[4] C. G. Peterson,et al. Long-distance quantum key distribution in optical fibre , 2006, quant-ph/0607177.
[5] Mateus Araújo,et al. Computational advantage from quantum-controlled ordering of gates. , 2014, Physical review letters.
[6] Sae Woo Nam,et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.
[7] G. M. Kelly,et al. Coherence for compact closed categories , 1980 .
[8] F. Martini,et al. Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.
[9] Philip Walther,et al. Experimental verification of an indefinite causal order , 2016, Science Advances.
[10] A. Kissinger,et al. ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity , 2018, QPL.
[11] Amar Hadzihasanovic,et al. The algebra of entanglement and the geometry of composition , 2017, ArXiv.
[12] vCaslav Brukner,et al. Quantum superposition of the order of parties as a communication resource , 2015, 1508.07840.
[13] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[14] Scott Aaronson,et al. The computational complexity of linear optics , 2010, STOC '11.
[15] Yongmei Huang,et al. Satellite-to-ground quantum key distribution , 2017, Nature.
[16] Filippo Bonchi,et al. Interacting Hopf Algebras , 2014, ArXiv.
[17] B. Valiron,et al. Quantum computations without definite causal structure , 2009, 0912.0195.
[18] Giovanni de Felice,et al. A diagrammatic calculus of fermionic quantum circuits , 2019, Log. Methods Comput. Sci..
[19] G. D’Ariano,et al. Quantum computation with programmable connections between gates , 2011, 1109.5987.
[20] Filippo Bonchi,et al. Diagrammatic algebra: from linear to concurrent systems , 2019, Proc. ACM Program. Lang..
[21] T. Rudolph,et al. Resource-efficient linear optical quantum computation. , 2004, Physical review letters.
[22] Yuan Feng,et al. Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs , 2014, ArXiv.
[23] G. Milburn,et al. Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.
[24] C. Branciard,et al. Communication through coherent control of quantum channels , 2018, Quantum.
[25] Simon Perdrix,et al. A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.
[26] Philip Walther,et al. Experimental superposition of orders of quantum gates , 2014, Nature Communications.
[27] Mateus Araújo,et al. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication. , 2016, Physical review letters.
[28] WEAK BRAIDED MONOIDAL CATEGORIES AND THEIR HOMOTOPY COLIMITS , 2014, 1410.6738.
[29] Jonathan Grattage. A functional quantum programming language , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).
[30] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[31] Rob Thew,et al. Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.
[32] Gilles Dowek,et al. Lineal: A linear-algebraic Lambda-calculus , 2017, Log. Methods Comput. Sci..
[33] Filippo Bonchi,et al. Graphical Affine Algebra , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[34] Masato Koashi,et al. Probabilistic manipulation of entangled photons , 2001 .
[35] Juliana Kaizer Vizzotto,et al. From Symmetric Pattern-Matching to Quantum Control , 2018, FoSSaCS.
[36] M. Nielsen. Optical quantum computation using cluster States. , 2004, Physical review letters.
[37] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[38] R. Vogt,et al. Homotopy Colimits of Algebras Over Cat-Operads and Iterated Loop Spaces , 2011, 1109.0265.
[39] Filippo Bonchi. Interacting Hopf Algebras: the Theory of Linear Systems (text not included) , 2019, ICTCS.