Microstructural heterogeneity and its relationship to the strength of martensite

[1]  M. Barnett,et al.  Yielding Behaviour of Martensite in Steel , 2015 .

[2]  G. Krauss,et al.  Atomic and nanoscale chemical and structural changes in quenched and tempered 4340 steel , 2014 .

[3]  D. Mangelinck,et al.  Static and dynamical ageing processes at room temperature in a Fe25Ni0.4C virgin martensite: effect of C redistribution at the nanoscale , 2013 .

[4]  G. Badinier The effect of carbon segregation and carbide precipitation on the mechanical response of martensite , 2013 .

[5]  O. Bouaziz,et al.  Characterization and Modeling of Manganese Effect on Strength and Strain Hardening of Martensitic Carbon Steels , 2013 .

[6]  Michael K Miller,et al.  Atom Probe Tomography: Analysis at the Atomic Level , 2012 .

[7]  H. Leitner,et al.  Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1. , 2012, Micron.

[8]  O. Bouaziz,et al.  Toward a new interpretation of the mechanical behaviour of As-quenched low alloyed martensitic steels , 2012 .

[9]  F. Danoix,et al.  Atom probe tomography investigation of assisted precipitation of secondary hardening carbides in a medium carbon martensitic steels , 2011, Journal of microscopy.

[10]  M. Thuvander,et al.  Microstructures and hardness of as-quenched martensites (0.10.5%C) , 2011 .

[11]  G. Smith,et al.  Carbide characterization in low-temperature tempered steels. , 2009, Ultramicroscopy.

[12]  K. Hono,et al.  Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass% C martensite , 2007 .

[13]  G. D. Smith,et al.  Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel. , 2007, Ultramicroscopy.

[14]  S. H. Kim,et al.  Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, High Silicon Steel , 2007 .

[15]  B. Deconihout,et al.  Design of a delay-line position-sensitive detector with improved performance , 2005 .

[16]  Y. Wang,et al.  Modelling of precipitation of carbides during tempering of martensite , 2004 .

[17]  Sven Vandeputte,et al.  Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels , 2004 .

[18]  Shigekazu Morito,et al.  Dislocation density within lath martensite in Fe-C and Fe-Ni alloys , 2003 .

[19]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[20]  Y. Bréchet,et al.  Modeling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization , 2002 .

[21]  J. Grum,et al.  Influence of Quenching Process Parameters on Residual Stresses in Steels , 2001 .

[22]  H. Zandbergen,et al.  Initial stages of Fe-C martensite decomposition , 2001 .

[23]  G. Smith,et al.  Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron , 2000 .

[24]  G. Krauss Martensite in steel: strength and structure , 1999 .

[25]  A. Deschamps,et al.  Influence of predeformation and agEing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress , 1998 .

[26]  X. Sauvage,et al.  Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe , 1998 .

[27]  Michael K Miller,et al.  Atom Probe Field Ion Microscopy , 1996 .

[28]  W. Sha,et al.  Some aspects of atom-probe analysis of FeC and FeN systems , 1992 .

[29]  G. Olson,et al.  Early stages of aging and tempering of ferrous martensites , 1983 .

[30]  C. M. Wayman,et al.  Characteristics of lath martensite: Part I. crystallographic and substructural features , 1983 .

[31]  M. Miller,et al.  A study of the early stages of tempering of iron-carbon martensites by atom probe field ion microscopy , 1981 .

[32]  G. R. Johnson,et al.  Large Strain, High Strain Rate Testing of Copper , 1980 .

[33]  G. Krauss,et al.  A study of the early stages of tempering in an Fe-1.2 Pct alloy , 1979 .

[34]  G. Thomas Retained austenite and tempered martensite embrittlement , 1978 .

[35]  C. Apple,et al.  Packet microstructure in Fe-0.2 pct C martensite , 1974, Metallurgical and Materials Transactions B.

[36]  Y. Hirotsu,et al.  Electron Microscopy and Diffraction Study of the Carbide Precipitated at the First Stage of Tempering of Martensitic Medium Carbon Steel , 1974 .

[37]  K. Shimizu,et al.  High Voltage Electron Microscopy Study of the Metastable Iron Carbide in a Eutectoid Fe–C Alloy , 1974 .

[38]  Y. Hirotsu,et al.  Crystal structure and morphology of the carbide precipitated from martensitic high carbon steel during the first stage of tempering , 1972 .

[39]  J. Chipman Thermodynamics and phase diagram of the Fe-C system , 1972 .

[40]  G. Krauss,et al.  The morphology of martensite in iron alloys , 1971 .

[41]  A. Kelly,et al.  Strengthening methods in crystals , 1971 .

[42]  G. Thomas Electron microscopy investigations of ferrous martensites , 1971 .

[43]  Morris Cohen,et al.  Structural changes and strengthening in the strain tempering of martensite , 1970 .

[44]  M. Richman,et al.  Electron microscopy of the fine structure in iron-nickel-carbon martensites , 1968 .

[45]  D. Wilson Effects of plastic deformation on carbide precipitation in steel , 1957 .