Computation of the Highest Coefficients of Weighted Ehrhart Quasi-polynomials of Rational Polyhedra
暂无分享,去创建一个
Jesús A. De Loera | Velleda Baldoni | Michèle Vergne | Matthias Köppe | Nicole Berline | J. D. Loera | M. Köppe | M. Vergne | V. Baldoni | N. Berline
[1] P. Diaconis,et al. Rectangular Arrays with Fixed Margins , 1995 .
[2] J. D. Loera. The many aspects of counting lattice points in polytopes , 2005 .
[3] M. Brion,et al. Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .
[4] M. Brion. Points entiers dans les polyèdres convexes , 1988 .
[5] Matthias Ko¨ppe. A Primal Barvinok Algorithm Based on Irrational Decompositions , 2007 .
[6] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[7] Velleda Baldoni,et al. Intermediate Sums on Polyhedra: Computation and Real Ehrhart Theory , 2010, ArXiv.
[8] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[9] David Bremner,et al. Primal—Dual Methods for Vertex and Facet Enumeration , 1998, Discret. Comput. Geom..
[10] Shafi Goldwasser,et al. Complexity of lattice problems , 2002 .
[11] George E. Andrews,et al. MacMahon’s Dream , 2012 .
[12] Sven Verdoolaege,et al. Counting with rational generating functions , 2008, J. Symb. Comput..
[13] Velleda Baldoni,et al. Local Euler-Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of a rational polytope , 2007 .
[14] László Lovász,et al. Linear decision trees: volume estimates and topological bounds , 1992, STOC '92.
[15] Alexander Barvinok,et al. Integer Points in Polyhedra , 2008 .
[16] Ravi Kannan,et al. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..
[17] Jesús A. De Loera,et al. Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..
[18] J. D. Loera,et al. Triangulations: Structures for Algorithms and Applications , 2010 .
[19] R. Morelli,et al. Pick's theorem and the Todd class of a toric variety , 1993 .
[20] Michèle Vergne,et al. Lattice points in simple polytopes , 1997 .
[21] Beifang Chen,et al. Lattice Points, Dedekind Sums, and Ehrhart Polynomials of Lattice Polyhedra , 2002, Discret. Comput. Geom..
[22] Alexander I. Barvinok,et al. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[23] Alexander I. Barvinok. Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..
[24] Alexander I. Barvinok,et al. A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed , 1993, FOCS.
[25] Donald E. Amos,et al. Computation of Exponential Integrals , 1980, TOMS.
[26] Matthias Köppe,et al. A Primal Barvinok Algorithm Based on Irrational Decompositions , 2006, SIAM J. Discret. Math..
[27] Jesús A. De Loera,et al. Integer Polynomial Optimization in Fixed Dimension , 2006, Math. Oper. Res..
[28] Adrian Dobra,et al. LATTICE POINTS, CONTINGENCY TABLES, AND SAMPLING , 2007 .
[29] Jesús A. De Loera,et al. How to integrate a polynomial over a simplex , 2008, Math. Comput..
[30] S. Robins,et al. Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .
[31] A. I. Barvinok,et al. Computing the Ehrhart polynomial of a convex lattice polytope , 1994, Discret. Comput. Geom..