Computation of the Highest Coefficients of Weighted Ehrhart Quasi-polynomials of Rational Polyhedra

This article concerns the computational problem of counting the lattice points inside convex polytopes, when each point must be counted with a weight associated to it. We describe an efficient algorithm for computing the highest degree coefficients of the weighted Ehrhart quasi-polynomial for a rational simple polytope in varying dimension, when the weights of the lattice points are given by a polynomial function h. Our technique is based on a refinement of an algorithm of A. Barvinok in the unweighted case (i.e., h≡1). In contrast to Barvinok’s method, our method is local, obtains an approximation on the level of generating functions, handles the general weighted case, and provides the coefficients in closed form as step polynomials of the dilation. To demonstrate the practicality of our approach, we report on computational experiments which show that even our simple implementation can compete with state-of-the-art software.

[1]  P. Diaconis,et al.  Rectangular Arrays with Fixed Margins , 1995 .

[2]  J. D. Loera The many aspects of counting lattice points in polytopes , 2005 .

[3]  M. Brion,et al.  Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .

[4]  M. Brion Points entiers dans les polyèdres convexes , 1988 .

[5]  Matthias Ko¨ppe A Primal Barvinok Algorithm Based on Irrational Decompositions , 2007 .

[6]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[7]  Velleda Baldoni,et al.  Intermediate Sums on Polyhedra: Computation and Real Ehrhart Theory , 2010, ArXiv.

[8]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[9]  David Bremner,et al.  Primal—Dual Methods for Vertex and Facet Enumeration , 1998, Discret. Comput. Geom..

[10]  Shafi Goldwasser,et al.  Complexity of lattice problems , 2002 .

[11]  George E. Andrews,et al.  MacMahon’s Dream , 2012 .

[12]  Sven Verdoolaege,et al.  Counting with rational generating functions , 2008, J. Symb. Comput..

[13]  Velleda Baldoni,et al.  Local Euler-Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of a rational polytope , 2007 .

[14]  László Lovász,et al.  Linear decision trees: volume estimates and topological bounds , 1992, STOC '92.

[15]  Alexander Barvinok,et al.  Integer Points in Polyhedra , 2008 .

[16]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[17]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[18]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[19]  R. Morelli,et al.  Pick's theorem and the Todd class of a toric variety , 1993 .

[20]  Michèle Vergne,et al.  Lattice points in simple polytopes , 1997 .

[21]  Beifang Chen,et al.  Lattice Points, Dedekind Sums, and Ehrhart Polynomials of Lattice Polyhedra , 2002, Discret. Comput. Geom..

[22]  Alexander I. Barvinok,et al.  A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[23]  Alexander I. Barvinok Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..

[24]  Alexander I. Barvinok,et al.  A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed , 1993, FOCS.

[25]  Donald E. Amos,et al.  Computation of Exponential Integrals , 1980, TOMS.

[26]  Matthias Köppe,et al.  A Primal Barvinok Algorithm Based on Irrational Decompositions , 2006, SIAM J. Discret. Math..

[27]  Jesús A. De Loera,et al.  Integer Polynomial Optimization in Fixed Dimension , 2006, Math. Oper. Res..

[28]  Adrian Dobra,et al.  LATTICE POINTS, CONTINGENCY TABLES, AND SAMPLING , 2007 .

[29]  Jesús A. De Loera,et al.  How to integrate a polynomial over a simplex , 2008, Math. Comput..

[30]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[31]  A. I. Barvinok,et al.  Computing the Ehrhart polynomial of a convex lattice polytope , 1994, Discret. Comput. Geom..