Computation and Continuation of Homoclinic and Heteroclinic Orbits with Arclength Parameterization

In this paper, we study a numerical method for the computation and continuation of homoclinic and heteroclinic orbits based upon the arclength parameterization of the orbits. Unlike most other methods, this method utilizes the geometric structure of the homoclinic and heteroclinic orbits and does not require solving a boundary value problem (BVP) on an infinite interval. However, the BVP formulated by this method can have a singularity at the end of the domain, and thus we introduce a special collocation method to handle such a singularity. We discuss the convergence properties of our collocation method and the implementation of the method which uses the software AUTO. For several examples we show that the arclength parameterization compares very favorably with the other numerical methods, although there are some limitations in the Sil'nikov case.

[1]  TwoFengshan Bai Numerical Detection and Continuation of Saddle-node Homoclinic Bifurcations of Codimension One and Two , 1994 .

[2]  Li-hsin Liu,et al.  Numerical Methods and Software for Solving Boundary Value ODES for Bifurcation Analysis , 1993 .

[3]  Alan R. Champneys,et al.  Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two , 1996 .

[4]  Yu. A. Kuznetsov,et al.  NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .

[5]  Allan Jepsow,et al.  The computation of paths of homoclinic orbits , 1994 .

[6]  H. B. Keller,et al.  Boundary Value Problems on Semi-Infinite Intervals and Their Numerical Solution , 1980 .

[7]  Robert D. Russell,et al.  Numerical Calculation of Invariant Tori , 1991, SIAM J. Sci. Comput..

[8]  G. Moore,et al.  Algorithms for constructing stable manifolds of stationary solutions , 1999 .

[9]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[10]  Robert D. Russell,et al.  Collocation Software for Boundary-Value ODEs , 1981, TOMS.

[11]  Leon O. Chua,et al.  ON PERIODIC ORBITS AND HOMOCLINIC BIFURCATIONS IN CHUA’S CIRCUIT WITH A SMOOTH NONLINEARITY , 1993 .

[12]  Mark J. Friedman,et al.  Numerical computation of heteroclinic orbits , 1989 .

[13]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[14]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[15]  Stephen Schecter,et al.  Rate of convergence of numerical approximations to homoclinic bifurcation points , 1995 .

[16]  Tao Tang,et al.  The numerical computation of connecting orbits in dynamical systems: a rational spectral approach , 1994 .

[17]  Andrew M. Stuart,et al.  The Numerical Computation of Heteroclinic Connections in Systems of Gradient Partial Differential Equations , 1993, SIAM J. Appl. Math..

[18]  R. Russell,et al.  Linear system solvers for boundary value ODEs , 1993 .

[19]  Mark J. Friedman,et al.  Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .

[20]  G. Moore,et al.  Computation and parametrization of periodic and connecting orbits , 1995 .

[21]  Wolf-Jürgen Beyn Global Bifurcations and their Numerical Computation , 1990 .

[22]  Mark J. Friedman,et al.  Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .

[23]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[24]  Stephen Schecter,et al.  Numerical computation of saddle-node homoclinic bifurcation points , 1993 .