Mathematical analysis of a new nonlinear dengue epidemic model via deterministic and fractional approach

[1]  Rahat Zarin Modeling and numerical analysis of fractional order hepatitis B virus model with harmonic mean type incidence rate , 2022, Computer methods in biomechanics and biomedical engineering.

[2]  S. S. Sajjadi,et al.  Analysis and some applications of a regularized Ψ–Hilfer fractional derivative , 2022, Journal of Computational and Applied Mathematics.

[3]  T. Abdeljawad,et al.  Computational analysis of fractional order imperfect testing infection disease model , 2022, Fractals.

[4]  T. Abdeljawad,et al.  Analytical analysis of fractional-order sequential hybrid system with numerical application , 2022, Advances in Continuous and Discrete Models.

[5]  J. Nieto,et al.  On a new and generalized fractional model for a real cholera outbreak , 2022, Alexandria Engineering Journal.

[6]  Amir Khan,et al.  Deterministic and fractional modeling of a computer virus propagation , 2022, Results in Physics.

[7]  Amir Khan,et al.  Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators , 2022, AIMS Mathematics.

[8]  Amir Khan,et al.  Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator , 2022, AIMS Mathematics.

[9]  D. Baleanu,et al.  A new and general fractional Lagrangian approach: A capacitor microphone case study , 2021, Results in Physics.

[10]  Amir Khan,et al.  Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate , 2021, Computer methods in biomechanics and biomedical engineering.

[11]  Amir Khan,et al.  Dynamics of five grade leishmania epidemic model using fractional operator with Mittag–Leffler kernel , 2021 .

[12]  Amir Khan,et al.  Stability analysis of five-grade Leishmania epidemic model with harmonic mean-type incidence rate , 2021 .

[13]  G. Zaman,et al.  Fractional modeling of COVID-19 epidemic model with harmonic mean type incidence rate , 2021, Open Physics.

[14]  Ghulam Hussain,et al.  Stability analysis and optimal control of covid-19 with convex incidence rate in Khyber Pakhtunkhawa (Pakistan) , 2020, Results in Physics.

[15]  S. İğret Araz Analysis of a Covid-19 model: Optimal control, stability and simulations , 2020, Alexandria Engineering Journal.

[16]  Z. Khan,et al.  Stability analysis of a dynamical model of tuberculosis with incomplete treatment , 2020 .

[17]  K. Shah,et al.  Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative , 2020, Alexandria Engineering Journal.

[18]  Fatmawati,et al.  The dynamics of dengue infection through fractal-fractional operator with real statistical data , 2020 .

[19]  Samaneh Sadat Sajjadi,et al.  A new adaptive synchronization and hyperchaos control of a biological snap oscillator , 2020 .

[20]  D. Baleanu,et al.  A New Iterative Method for the Numerical Solution of High-Order Non-linear Fractional Boundary Value Problems , 2020, Frontiers in Physics.

[21]  G. Zaman,et al.  Stability analysis of leishmania epidemic model with harmonic mean type incidence rate , 2020, European physical journal plus.

[22]  A. Atangana,et al.  Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications , 2020, Advances in Difference Equations.

[23]  E. Bonyah,et al.  Mathematical modeling of cancer and hepatitis co-dynamics with non-local and non-singular kernel , 2020 .

[24]  D. Baleanu,et al.  Planar System-Masses in an Equilateral Triangle: Numerical Study within Fractional Calculus , 2020, Computer Modeling in Engineering & Sciences.

[25]  Ravi P. Agarwal,et al.  Mathematical analysis of giving up smoking model via harmonic mean type incidence rate , 2019, Appl. Math. Comput..

[26]  D. Baleanu,et al.  Stability and existence results for a class of nonlinear fractional differential equations with singularity , 2018 .

[27]  R. Agarwal,et al.  Threshold dynamics and optimal control of an age-structured giving up smoking model , 2018, Nonlinear Analysis: Real World Applications.

[28]  Ghaus ur Rahman,et al.  Numerical solution of fractional order smoking model via laplace Adomian decomposition method , 2017, Alexandria Engineering Journal.

[29]  D. Baleanu,et al.  A hybrid functions numerical scheme for fractional optimal control problems: Application to nonanalytic dynamic systems , 2017 .

[30]  F. Haq,et al.  Numerical analysis of fractional order model of HIV-1 infection of CD4+ T-cells , 2017 .

[31]  Asep K. Supriatna,et al.  A Critical Protection Level Derived from Dengue Infection Mathematical Model Considering Asymptomatic and Symptomatic Classes , 2013 .

[32]  E. Khan,et al.  Demographic and Clinical Features of Dengue Fever in Pakistan from 2003–2007: A Retrospective Cross-Sectional Study , 2010, PloS one.

[33]  Samuel Bowong,et al.  Lyapunov functions for a dengue disease transmission model , 2009 .

[34]  Mohammed Derouich,et al.  Dengue fever: Mathematical modelling and computer simulation , 2006, Appl. Math. Comput..

[35]  Andrei Korobeinikov,et al.  Lyapunov functions and global properties for SEIR and SEIS epidemic models. , 2004, Mathematical medicine and biology : a journal of the IMA.

[36]  Philip K Maini,et al.  A lyapunov function and global properties for sir and seir epidemiological models with nonlinear incidence. , 2004, Mathematical biosciences and engineering : MBE.

[37]  A. Boutayeb,et al.  A model of dengue fever , 2003, Biomedical engineering online.

[38]  Shigui Ruan,et al.  Dynamical behavior of an epidemic model with a nonlinear incidence rate , 2003 .

[39]  M. Edmunds,et al.  Immunization and vaccine-preventable illness, United States, 1992 to 1997. , 1999, Statistical bulletin.

[40]  Lourdes Esteva,et al.  A model for dengue disease with variable human population , 1999, Journal of mathematical biology.

[41]  Asep K. Supriatna,et al.  A Two-dimensional Model for the Transmission of Dengue Fever Disease * , 1999 .

[42]  Duane J. Gubler,et al.  Dengue and Dengue Hemorrhagic Fever , 1998, Clinical Microbiology Reviews.

[43]  L. Esteva,et al.  Analysis of a dengue disease transmission model. , 1998, Mathematical biosciences.

[44]  J. Velasco-Hernández,et al.  Competitive exclusion in a vector-host model for the dengue fever , 1997, Journal of mathematical biology.

[45]  Herbert W. Hethcote,et al.  Dynamic models of infectious diseases as regulators of population sizes , 1992, Journal of mathematical biology.

[46]  Robert H. Martin Logarithmic norms and projections applied to linear differential systems , 1974 .