Interlayer Excitons in Transition‐Metal Dichalcogenide Heterobilayers

In heterobilayers consisting of different transition‐metal dichalcogenide (TMDC) monolayers, optically excited electron–hole pairs can be spatially separated into the adjacent layers due to a type‐II band alignment. However, they remain Coulomb correlated and form interlayer excitons (ILEs), which recombine radiatively. While these ILEs are observed in several TMDC material combinations, their characters and properties depend on the specific system. Herein, some of these peculiarities are demonstrated by comparing studies performed on two different heterobilayer combinations: MoS2–WSe2 and MoSe2–WSe2.

[1]  E. Malic,et al.  Ultrafast transition between exciton phases in van der Waals heterostructures , 2019, Nature Materials.

[2]  K. Novoselov,et al.  Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.

[3]  Kenji Watanabe,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[4]  Jiaqiang Yan,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[5]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[6]  D. Reichman,et al.  Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures , 2018, Nature Physics.

[7]  C. Strunk,et al.  Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures , 2017, Nature Communications.

[8]  A. Jang,et al.  Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. , 2017, ACS nano.

[9]  F. Jahnke,et al.  Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures. , 2017, Nano letters.

[10]  C. Strunk,et al.  Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure , 2017, 1703.00379.

[11]  Xiaodong Xu,et al.  Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.

[12]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[13]  K. Thygesen,et al.  Interlayer Excitons and Band Alignment in MoS2/hBN/WSe2 van der Waals Heterostructures. , 2016, Nano letters.

[14]  J. Fabian,et al.  Excitonic Valley Effects in Monolayer WS2 under High Magnetic Fields. , 2016, Nano letters.

[15]  C. Robert,et al.  Exciton radiative lifetime in transition metal dichalcogenide monolayers , 2016, 1603.00277.

[16]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[17]  B. Jonker,et al.  Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla , 2015, Nature Communications.

[18]  R. Bratschitsch,et al.  Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. , 2015, Nature materials.

[19]  Myoung-Jae Lee,et al.  Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks , 2015, Nature Communications.

[20]  K. Thygesen,et al.  Dielectric Genome of van der Waals Heterostructures. , 2015, Nano letters.

[21]  Xiaodong Xu,et al.  Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. , 2015, Physical review letters.

[22]  Takayoshi Kobayashi,et al.  Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2 , 2015, Scientific Reports.

[23]  B. Jonker,et al.  Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2 , 2014, 1412.2156.

[24]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[25]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[26]  Jonghwan Kim,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[27]  Aaron M. Jones,et al.  Magnetic control of valley pseudospin in monolayer WSe2 , 2014, Nature Physics.

[28]  Andras Kis,et al.  Valley Zeeman effect in elementary optical excitations of monolayer WSe2 , 2014, Nature Physics.

[29]  D. Ralph,et al.  Breaking of valley degeneracy by magnetic field in monolayer MoSe2. , 2014, Physical review letters.

[30]  Sefaattin Tongay,et al.  Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.

[31]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[32]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[33]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[34]  A. Burger,et al.  Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy , 2014, Scientific Reports.

[35]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[36]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[37]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[38]  V. M. Ghete,et al.  Evidence of b-jet quenching in PbPb collisions at √(s(NN))=2.76  TeV. , 2013, Physical review letters.

[39]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[40]  K. Mak,et al.  Observation of intense second harmonic generation from MoS 2 atomic crystals , 2013, 1304.4289.

[41]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[42]  Ashok Kumar,et al.  Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): Effect of quantum confinement , 2012 .

[43]  K. Ko'smider,et al.  Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.

[44]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[45]  A. Gossard,et al.  Spontaneous coherence in a cold exciton gas , 2011, Nature.

[46]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[47]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[48]  R. Rapaport,et al.  Exciton correlations in coupled quantum wells and their luminescence blue shift , 2009, 0908.1810.

[49]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[50]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[51]  R. Zimmermann,et al.  Analysis of the exciton-exciton interaction in semiconductor quantum wells , 2008, 0802.3337.

[52]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Snoke Spontaneous Bose Coherence of Excitons and Polaritons , 2002, Science.

[54]  A. Gossard,et al.  MAGNETO-OPTICS OF THE SPATIALLY SEPARATED ELECTRON AND HOLE LAYERS IN GAAS/ALXGA1-XAS COUPLED QUANTUM WELLS , 1999 .

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[57]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[58]  Zhu,et al.  Exciton condensate in semiconductor quantum well structures. , 1995, Physical review letters.

[59]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[60]  Weimann,et al.  Condensation of indirect excitons in coupled AlAs/GaAs quantum wells. , 1993, Physical review letters.

[61]  Juwon Lee,et al.  Resonantly hybridised excitons in moiré superlattices in van der Waals heterostructures , 2019 .