Interlayer Excitons in Transition‐Metal Dichalcogenide Heterobilayers
暂无分享,去创建一个
D. Reichman | G. Seifert | C. Strunk | P. Christianen | J. Kunstmann | Frederick Stein | A. Chernikov | A. Chaves | R. Huber | Sebastian B. Meier | T. Korn | C. Schüller | G. Plechinger | P. Nagler | N. Paradiso | A. Mitioglu | F. Mooshammer | M. Ballottin | M. V. Ballottin
[1] E. Malic,et al. Ultrafast transition between exciton phases in van der Waals heterostructures , 2019, Nature Materials.
[2] K. Novoselov,et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.
[3] Kenji Watanabe,et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.
[4] Jiaqiang Yan,et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.
[5] S. Banerjee,et al. Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.
[6] D. Reichman,et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures , 2018, Nature Physics.
[7] C. Strunk,et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures , 2017, Nature Communications.
[8] A. Jang,et al. Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. , 2017, ACS nano.
[9] F. Jahnke,et al. Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures. , 2017, Nano letters.
[10] C. Strunk,et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure , 2017, 1703.00379.
[11] Xiaodong Xu,et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.
[12] M. Chou,et al. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.
[13] K. Thygesen,et al. Interlayer Excitons and Band Alignment in MoS2/hBN/WSe2 van der Waals Heterostructures. , 2016, Nano letters.
[14] J. Fabian,et al. Excitonic Valley Effects in Monolayer WS2 under High Magnetic Fields. , 2016, Nano letters.
[15] C. Robert,et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers , 2016, 1603.00277.
[16] Wang Yao,et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.
[17] B. Jonker,et al. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla , 2015, Nature Communications.
[18] R. Bratschitsch,et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. , 2015, Nature materials.
[19] Myoung-Jae Lee,et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks , 2015, Nature Communications.
[20] K. Thygesen,et al. Dielectric Genome of van der Waals Heterostructures. , 2015, Nano letters.
[21] Xiaodong Xu,et al. Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. , 2015, Physical review letters.
[22] Takayoshi Kobayashi,et al. Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2 , 2015, Scientific Reports.
[23] B. Jonker,et al. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2 , 2014, 1412.2156.
[24] Jun Lou,et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.
[25] G. Burkard,et al. k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.
[26] Jonghwan Kim,et al. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.
[27] Aaron M. Jones,et al. Magnetic control of valley pseudospin in monolayer WSe2 , 2014, Nature Physics.
[28] Andras Kis,et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2 , 2014, Nature Physics.
[29] D. Ralph,et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. , 2014, Physical review letters.
[30] Sefaattin Tongay,et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.
[31] Wang Yao,et al. Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.
[32] S. Louie,et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.
[33] K. Novoselov,et al. High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.
[34] A. Burger,et al. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy , 2014, Scientific Reports.
[35] Aaron M. Jones,et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.
[36] Timothy C. Berkelbach,et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.
[37] Eli Yablonovitch,et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.
[38] V. M. Ghete,et al. Evidence of b-jet quenching in PbPb collisions at √(s(NN))=2.76 TeV. , 2013, Physical review letters.
[39] Vibhor Singh,et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.
[40] K. Mak,et al. Observation of intense second harmonic generation from MoS 2 atomic crystals , 2013, 1304.4289.
[41] Jian Zhou,et al. Band offsets and heterostructures of two-dimensional semiconductors , 2013 .
[42] Ashok Kumar,et al. Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): Effect of quantum confinement , 2012 .
[43] K. Ko'smider,et al. Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.
[44] Wang Yao,et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.
[45] A. Gossard,et al. Spontaneous coherence in a cold exciton gas , 2011, Nature.
[46] J. Shan,et al. Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.
[47] A. Splendiani,et al. Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.
[48] R. Rapaport,et al. Exciton correlations in coupled quantum wells and their luminescence blue shift , 2009, 0908.1810.
[49] A. Tkatchenko,et al. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.
[50] S. Lebègue,et al. Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.
[51] R. Zimmermann,et al. Analysis of the exciton-exciton interaction in semiconductor quantum wells , 2008, 0802.3337.
[52] K. Novoselov,et al. Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[53] D. Snoke. Spontaneous Bose Coherence of Excitons and Polaritons , 2002, Science.
[54] A. Gossard,et al. MAGNETO-OPTICS OF THE SPATIALLY SEPARATED ELECTRON AND HOLE LAYERS IN GAAS/ALXGA1-XAS COUPLED QUANTUM WELLS , 1999 .
[55] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[56] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[57] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[58] Zhu,et al. Exciton condensate in semiconductor quantum well structures. , 1995, Physical review letters.
[59] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[60] Weimann,et al. Condensation of indirect excitons in coupled AlAs/GaAs quantum wells. , 1993, Physical review letters.
[61] Juwon Lee,et al. Resonantly hybridised excitons in moiré superlattices in van der Waals heterostructures , 2019 .