State of the art and applications in archaeological underwater 3D recording and mapping

Abstract Since remote times, mankind has been bound to water bodies and evidence of human life from the very beginning hides under the water level, off the coasts, under shallow seas or deep oceans, but also inland water bodies of countries all around the world. Recording, documenting and, ultimately, protecting underwater cultural heritage is an obligation of mankind and dictated by international treaties like the Convention on the Protection of the Underwater Cultural Heritage that fosters and encourages the use of “non-destructive techniques and survey methods in preference over the recovery of objects”. 3D digital surveying and mapping techniques represent an invaluable set of effective tools for reconnaissance, documentation, monitoring, but also public diffusion and awareness of underwater cultural heritage (UCH) assets. This paper presents an extensive review over the sensors and the methodologies used in archaeological underwater 3D recording and mapping together with relevant highlights of well renowned projects in 3D recording underwater.

[1]  Fabio Menna,et al.  A photogrammetric approach to survey floating and semi-submerged objects , 2013, Optical Metrology.

[2]  Thomas P. Kersten,et al.  Low-Cost and Open-Source Solutions for Automated Image Orientation - A Critical Overview , 2012, EuroMed.

[3]  Rodrigo Torres,et al.  Multi-Image Photogrammetry to Record and Reconstruct Underwater Shipwreck Sites , 2017 .

[4]  H. Singh,et al.  Photogrammetric models for marine archaeology , 2006, OCEANS 2006.

[5]  Djamel Merad,et al.  ROV-3D, 3D Underwater Survey Combining Optical and Acoustic Sensor , 2011, VAST.

[6]  R. Rinaldi,et al.  FILMING UNDERWATER IN 3D RESPECTING STEREOGRAPHIC RULES , 2015 .

[7]  Damià Vericat,et al.  Through‐water terrestrial laser scanning of gravel beds at the patch scale , 2012 .

[8]  J. Irish,et al.  Scanning laser mapping of the coastal zone: the SHOALS system , 1999 .

[9]  Stefan B. Williams,et al.  Error modeling and calibration of exteroceptive sensors for accurate mapping applications , 2010 .

[10]  Fabio Remondino,et al.  3D Recording, Documentation and Management of Cultural Heritage , 2016 .

[11]  J. Brasington,et al.  In situ characterization of grain‐scale fluvial morphology using Terrestrial Laser Scanning , 2009 .

[12]  Rongxin Li,et al.  Quantitative photogrammetric analysis of digital underwater video imagery , 1997 .

[13]  Qican Zhang,et al.  Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection , 2011 .

[14]  S E Masry,et al.  DIGITAL CORRELATION PRINCIPLES , 1974 .

[15]  Wolfgang Neubauer,et al.  3D LASER SCANNERS ON ARCHAEOLOGICAL EXCAVATIONS , 2005 .

[16]  T. Van Damme,et al.  Computer Vision Photogrammetry for Underwater Archaeological Site Recording in a Low-Visibility Environment , 2015 .

[17]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[18]  Dimitrios Skarlatos,et al.  The 4th-century B.C. shipwreck at Mazotos, Cyprus: New techniques and methodologies in the 3D mapping of shipwreck excavations , 2014 .

[19]  Chris Roman,et al.  Application of structured light imaging for high resolution mapping of underwater archaeological sites , 2010, OCEANS'10 IEEE SYDNEY.

[20]  F. M. Raimondi,et al.  A innovative semi-immergible USV (SI-USV) drone for marine and lakes operations with instrumental telemetry and acoustic data acquisition capability , 2015, OCEANS 2015 - Genova.

[21]  Carlo Beltrame,et al.  3D reconstruction of marble shipwreck cargoes based on underwater multi-image photogrammetry , 2016, Digit. Appl. Archaeol. Cult. Heritage.

[22]  Mark Shortis,et al.  Calibration Techniques for Accurate Measurements by Underwater Camera Systems , 2015, Sensors.

[23]  S. Dromgoole Underwater Cultural Heritage and International Law , 2013 .

[24]  Christian Bräuer-Burchardt,et al.  Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices , 2015, Sensors.

[25]  Peter Tian‐Yuan Shih,et al.  Historic Shipwreck Study in Dongsha Atoll with Bathymetric LiDAR , 2014 .

[26]  R. L. Allwood,et al.  Development and Applications of a Novel Underwater Laser Illumination System , 1995 .

[27]  Matthew Johnson-Roberson,et al.  Mapping Submerged Archaeological Sites using Stereo‐Vision Photogrammetry , 2013 .

[28]  Hans-Gerd Maas,et al.  On the Accuracy Potential in Underwater/Multimedia Photogrammetry , 2015, Sensors.

[29]  Richard P. Hodges Underwater Acoustics: Analysis, Design and Performance of Sonar , 2010 .

[30]  J. Nelson,et al.  Evaluation of an Experimental LiDAR for Surveying a Shallow, Braided, Sand-Bedded River , 2007 .

[31]  Christopher M. Clark,et al.  The Malta cistern mapping project: Underwater robot mapping and localization within ancient tunnel systems , 2010 .

[32]  Kevin Köser,et al.  DeepSurveyCam—A Deep Ocean Optical Mapping System , 2016, Sensors.

[33]  G. Seet,et al.  Divergent-beam Lidar imaging in turbid water , 2004 .

[34]  C. S. Fraser,et al.  ON THE CALIBRATION OF UNDERWATER CAMERAS , 2006 .

[35]  Dimitrios Skarlatos,et al.  THE EFFECT OF UNDERWATER IMAGERY RADIOMETRY ON 3DRECONSTRUCTION AND ORTHOIMAGERY , 2017 .

[36]  Ryan M. Eustice,et al.  Real-Time Visual SLAM for Autonomous Underwater Hull Inspection Using Visual Saliency , 2013, IEEE Transactions on Robotics.

[37]  Stefan B. Williams,et al.  Efficient View-Based SLAM Using Visual Loop Closures , 2008, IEEE Transactions on Robotics.

[38]  Fabio Bruno,et al.  An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera , 2016, Sensors.

[39]  J. Brasington,et al.  Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning , 2012 .

[40]  Franz S. Hover,et al.  Imaging sonar-aided navigation for autonomous underwater harbor surveillance , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Jonathan Benjamin,et al.  Multi-image Photogrammetry for Underwater Archaeological Site Recording: An Accessible, Diver-Based Approach , 2014, Journal of Maritime Archaeology.

[42]  C. Clay,et al.  Fundamentals of Acoustical Oceanography , 1997 .

[43]  Dirk Rieke-Zapp,et al.  A Digital Medium-Format Camera for Metric Applications—Alpa 12 Metric , 2010 .

[44]  D. J. Gregory Development of Tools and Techniques to Survey, Assess, Stabilise, Monitor and Preserve Underwater Archaeological Sites: SASMAP , 2015 .

[45]  Pierre Drap,et al.  Underwater Photogrammetry for Archaeology , 2012 .

[46]  Oscar Pizarro,et al.  High‐Resolution Underwater Robotic Vision‐Based Mapping and Three‐Dimensional Reconstruction for Archaeology , 2017, J. Field Robotics.

[47]  Gw Johnson,et al.  Stability of zoom and fixed lenses used with digital SLR cameras , 2006 .

[48]  Fabio Bruno,et al.  Evaluation of Underwater Image Enhancement Algorithms under Different Environmental Conditions , 2018 .

[49]  Rory Quinn,et al.  Backscatter responses and resolution considerations in archaeological side-scan sonar surveys: a control experiment , 2005 .

[50]  Peter Holt An assessment of quality in underwater archaeological surveys using tape measurements , 2003 .

[51]  Hanumant Singh,et al.  Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle , 2010, J. Field Robotics.

[52]  Sagi Filin,et al.  Photogrammetric modeling of underwater environments , 2010 .

[53]  Sandro Barone,et al.  Experimentation of structured light and stereo vision for underwater 3D reconstruction , 2011 .

[54]  G. Hickman,et al.  Application of an airborne pulsed laser for near shore bathymetric measurements , 1969 .

[55]  Huimin Lu,et al.  Underwater Optical Image Processing: a Comprehensive Review , 2017, Mob. Networks Appl..

[56]  Euan S. Harvey,et al.  A Review of Underwater Stereo-Image Measurement for Marine Biology and Ecology Applications , 2009 .

[57]  John D. Hedley,et al.  Combining optical and acoustic data to enhance the detection of Caribbean forereef habitats , 2010 .

[58]  B. J. Todd,et al.  Mapping submarine glacial landforms using acoustic methods , 2016, memoirs.

[59]  Dimitrios Skarlatos,et al.  Underwater Image Enhancement before Three-Dimensional (3D) Reconstruction and Orthoimage Production Steps: Is It Worth? , 2018 .

[60]  A. Morel Optical properties of pure water and pure sea water , 1974 .

[61]  Pierre Grussenmeyer,et al.  Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel † , 2015, Sensors.

[62]  Jeremy Green,et al.  Underwater archaeological surveying using PhotoModeler, VirtualMapper: different applications for different problems , 2002 .

[63]  Djamel Merad,et al.  The ROV 3D Project: Deep-Sea Underwater Survey Using Photogrammetry: Applications for Underwater Archaeology , 2015, JOCCH.

[64]  C. Siart,et al.  Digital Geoarchaeology: Bridging the Gap Between Archaeology, Geosciences and Computer Sciences , 2018 .

[65]  G. Papatheodorou,et al.  Remote sensing for underwater archaeology: case stud-ies from Greece and Eastern Mediterranean , 2017 .

[66]  J. B. Arnold Remote sensing in underwater archaeology , 1981 .

[67]  Antoni Burguera,et al.  Imaging Systems for Advanced Underwater Vehicles , 2011 .

[68]  John G. Fryer,et al.  Errors in depth determination caused by waves in through-water photogrammetry , 2006 .

[69]  Dirk Rieke-Zapp,et al.  Evaluation of the geometric stability and the accuracy potential of digital cameras - Comparing mechanical stabilisation versus parameterisation , 2009 .

[70]  N. Karpel,et al.  Attenuating natural flicker patterns , 2004, Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600).

[71]  T. Kersten,et al.  Automatic 3D Object Reconstruction from Multiple Images for Architectural, Cultural Heritage and Archaeological Applications Using Open-Source Software and Web Services Automatische 3D-Objektrekonstruktion aus digitalen Bilddaten für Anwendungen in Architektur, Denkmalpflege und Archäologie durch op , 2012 .

[72]  Jonathan Benjamin,et al.  A Feasibility Study for the Investigation of Submerged Sites along the Coast of Slovenia , 2009 .

[73]  N. Pfeifer GEOMETRICAL ASPECTS OF AIRBORNE LASER SCANNING AND TERRESTRIAL LASER SCANNING , 2007 .

[74]  V. D. Kuznetsov,et al.  PHOTOGRAMMETRIC TECHNIQUES FOR 3 – D UNDERWATER RECORD OF THE ANTIQUE TIME SHIP FROM PHANAGORIA , 2013 .

[75]  James T. Joiner,et al.  NOAA diving manual : diving for science and technology , 2001 .

[76]  H.-G. Maas,et al.  Digitale Photogrammetrie in der dreidimensionalen Strömungsmesstechnik , 1992 .

[77]  Fabio Bruno,et al.  Project VISAS: Virtual and Augmented Exploitation of Submerged Archaeological Sites-Overview and First Results , 2016 .

[78]  Fabio Remondino,et al.  Investigation of indoor and outdoor performance of two portable mobile mapping systems , 2017, Optical Metrology.

[79]  Filipe Castro,et al.  Underwater Photogrammetry and Object Modeling: A Case Study of Xlendi Wreck in Malta , 2015, Sensors.

[80]  D. Milan,et al.  Mapping hydraulic biotopes using terrestrial laser scan data of water surface properties , 2010 .

[81]  Hanumant Singh,et al.  Visually Navigating the RMS Titanic with SLAM Information Filters , 2005, Robotics: Science and Systems.

[82]  B. Davidde Petriaggi,et al.  LASER SCANNER RELIEFS OF SELECTED ARCHEOLOGICAL STRUCTURES IN THE SUBMERGED BAIAE (NAPLES) , 2015 .

[83]  Erica Nocerino,et al.  Underwater calibration of dome port pressure housings. , 2016 .

[84]  C. Briese,et al.  Airborne laser bathymetry – detecting and recording submerged archaeological sites from the air , 2013 .

[85]  E. Wohl,et al.  Characterizing spatial variability in velocity and turbulence intensity using 3-D acoustic Doppler velocimeter data in a plane-bed reach of East St. Louis Creek, Colorado, USA , 2013 .

[86]  Fabio Bruno,et al.  Project iMARECULTURE: Advanced VR, iMmersive Serious Games and Augmented REality as Tools to Raise Awareness and Access to European Underwater CULTURal heritagE , 2016, EuroMed.

[87]  Marc Rioux,et al.  Active Optical 3D Imaging for Heritage Applications , 2002, IEEE Computer Graphics and Applications.

[88]  Jie Shan Relative orientation for two-media photogrammetry , 1994 .

[89]  Fabio Menna,et al.  A CRITICAL REVIEW OF AUTOMATED PHOTOGRAMMETRICPROCESSING OF LARGE DATASETS , 2017 .

[90]  Roberto Saggiomo,et al.  Multi-resolution morpho-bathymetric survey results at the Pozzuoli–Baia underwater archaeological site (Naples, Italy) , 2013 .

[91]  Philippe Archambault,et al.  Mapping the Shallow Water Seabed Habitat With the SHOALS , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[92]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[93]  Gabriele Ferri,et al.  Underwater optical and acoustic imaging: A time for fusion? a brief overview of the state-of-the-art , 2016, OCEANS 2016 MTS/IEEE Monterey.

[94]  Yaacov Kahanov,et al.  The Tantura F Shipwreck, Israel , 2007 .

[95]  Fabio Remondino,et al.  Image‐based 3D Modelling: A Review , 2006 .

[96]  Franz S. Hover,et al.  Underwater inspection using sonar-based volumetric submaps , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[97]  S. Lane,et al.  Through‐Water Close Range Digital Photogrammetry in Flume and Field Environments , 2002 .

[98]  C. Briese,et al.  AIRBORNE LASER BATHYMETRY FOR DOCUMENTATION OF SUBMERGED ARCHAEOLOGICAL SITES IN SHALLOW WATER , 2015 .

[99]  François Blais Review of 20 years of range sensor development , 2004, J. Electronic Imaging.

[100]  Fabio Bruno,et al.  3D DOCUMENTATION OF ARCHEOLOGICAL REMAINS IN THE UNDERWATER PARK OF BAIAE , 2015 .

[101]  H. Maas,et al.  Analysis and correction of ocean wave pattern induced systematic coordinate errors in airborne LiDAR bathymetry , 2017 .

[102]  Stefan B. Williams,et al.  Colour-Consistent Structure-from-Motion Models using Underwater Imagery , 2012, Robotics: Science and Systems.

[103]  Fabio Menna,et al.  Joint alignment of underwater and above-the-water photogrammetric 3D models by independent models adjustment , 2015 .

[104]  B. Foley,et al.  Precision Survey and Archaeological Methodology in Deep Water , 2002 .

[105]  Rory Quinn,et al.  Using Multibeam Echo‐Sounder Data to Identify Shipwreck Sites: archaeological assessment of the Joint Irish Bathymetric Survey data , 2011 .

[106]  Damià Vericat,et al.  EVALUATING SHALLOW‐WATER BATHYMETRY FROM THROUGH‐WATER TERRESTRIAL LASER SCANNING UNDER A RANGE OF HYDRAULIC AND PHYSICAL WATER QUALITY CONDITIONS , 2014 .

[107]  Norbert Pfeifer,et al.  ORIENTATION AND PROCESSING OF AIRBORNE LASER SCANNING DATA (OPALS) - CONCEPT AND FIRST RESULTS OF A COMPREHENSIVE ALS SOFTWARE , 2009 .

[108]  Royann J. Petrell,et al.  Measurement of fish size in atlantic salmon (salmo salar l.) cages using stereographic video techniques , 1998 .

[109]  Francesco Giordano,et al.  Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters , 2015, Sensors.

[110]  Ross A. Hill,et al.  A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data , 2012 .

[111]  Dimitrios Skarlatos,et al.  An ‘Open’ Method for 3D Modelling and Mapping in Underwater Archaeological Sites , 2012 .

[112]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[113]  Jan Boehm,et al.  Close-Range Photogrammetry and 3D Imaging , 2013 .

[114]  Jules S. Jaffe,et al.  Computer modeling and the design of optimal underwater imaging systems , 1990 .

[115]  Panagiotis Agrafiotis,et al.  Documentation of a submerged monument using improved two media techniques , 2012, 2012 18th International Conference on Virtual Systems and Multimedia.

[116]  G. Bass Archaeology Under Water , 1966 .

[117]  M. Baeye,et al.  Detection of shipwrecks in ocean colour satellite imagery , 2016 .

[118]  Stephen Tetlow,et al.  Three-dimensional measurement of underwater work sites using structured laser light , 1999 .

[119]  Steve Tetlow,et al.  Use of a laser stripe illuminator for enhanced underwater viewing , 1994, Other Conferences.

[120]  Raimondo Schettini,et al.  Underwater Image Processing: State of the Art of Restoration and Image Enhancement Methods , 2010, EURASIP J. Adv. Signal Process..

[121]  Stuart N. Lane,et al.  REMOTE SENSING OF CLEAR-WATER, SHALLOW, GRAVEL-BED RIVERS USING DIGITAL PHOTOGRAMMETRY , 2001 .

[122]  Dimltri I. Rebikoff Mosaic And Strip Scanning Photogrammetry Of Large Areas Underwater Regardless Of Transparency Limitations , 1966, Other Conferences.

[124]  Fabio Menna,et al.  Photogrammetric Modelling of Submerged Structures: Influence of Underwater Environment and Lens Ports on Three-Dimensional (3D) Measurements , 2018 .

[125]  Julia Armesto,et al.  Geometric Stability and Lens Decentering in Compact Digital Cameras , 2010, Sensors.

[126]  Xavier Lurton,et al.  An Introduction to Underwater Acoustics: Principles and Applications , 2010 .

[127]  Peter R Hobson,et al.  Accurate three-dimensional metrology of underwater objects using replayed real images from in-line and off-axis holograms , 1999 .